On the potential of mapping sea level anomalies from satellite altimetry with Random Forest Regression

被引:2
|
作者
Passaro, Marcello [1 ]
Juhl, Marie-Christin [1 ]
机构
[1] Tech Univ Munich, Deutsch Geodat Forsch Inst, Arcisstr 21, D-80333 Munich, Germany
关键词
Sea level anomalies; Satellite altimetry; Spatio-temporal interpolation; Machine learning; Random Forest Regression; VERTICAL LAND MOTION; OCEAN;
D O I
10.1007/s10236-023-01540-4
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The sea level observations from satellite altimetry are characterised by a sparse spatial and temporal coverage. For this reason, along-track data are routinely interpolated into daily grids. These grids are strongly smoothed in time and space and are generated using an optimal interpolation routine requiring several pre-processing steps and covariance characterisation. In this study, we assess the potential of Random Forest Regression to estimate daily sea level anomalies. Along-track sea level data from 2004 are used to build a training dataset whose predictors are the neighbouring observations. The validation is based on the comparison against daily averages from tide gauges. The generated dataset is on average 10% more correlated to the tide gauge records than the commonly used product from Copernicus. While the latter is more optimised for the detection of spatial mesoscales, we show how the methodology of this study has the potential to improve the characterisation of sea level variability.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 50 条
  • [1] On the potential of mapping sea level anomalies from satellite altimetry with Random Forest Regression
    Marcello Passaro
    Marie-Christin Juhl
    [J]. Ocean Dynamics, 2023, 73 : 107 - 116
  • [2] Comparison of satellite altimetry sea level anomalies and hydrographic observations in the Mediterranean Sea
    Mir Calafat, Francisco
    Marcos Moreno, Marta
    [J]. SCIENTIA MARINA, 2012, 76 (03) : 429 - 439
  • [3] Mapping Sea Level from Space Precision Orbit Determination and Satellite Altimetry
    Salama, A.
    Willis, J.
    Srinivasan, M.
    [J]. CLIMATE: GLOBAL CHANGE AND LOCAL ADAPTATION, 2010, : 419 - 431
  • [4] Forecasting sea level anomalies from TOPEX/Poseidon and Jason-1 satellite altimetry
    Tomasz Niedzielski
    Wiesław Kosek
    [J]. Journal of Geodesy, 2009, 83 : 469 - 476
  • [5] Forecasting sea level anomalies from TOPEX/Poseidon and Jason-1 satellite altimetry
    Niedzielski, Tomasz
    Kosek, Wieslaw
    [J]. JOURNAL OF GEODESY, 2009, 83 (05) : 469 - 476
  • [6] Spatiotemporal Prediction of Satellite Altimetry Sea Level Anomalies in the Tropical Pacific Ocean
    Imani, Moslem
    Chen, Yi-Ching
    You, Rey-Jer
    Lan, Wen-Hau
    Kuo, Chung-Yen
    Chang, Jung-Chieh
    Rateb, Ashraf
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1126 - 1130
  • [8] Estimation of geostrophic current in the Red Sea based on sea level anomalies derived from extended satellite altimetry data
    Taqi, Ahmed Mohammed
    Al-Subhi, Abdullah Mohammed
    Alsaafani, Mohammed Ali
    Abdulla, Cheriyeri Poyil
    [J]. OCEAN SCIENCE, 2019, 15 (03) : 477 - 488
  • [9] Consolidating sea level acceleration estimates from satellite altimetry
    Veng, Tadea
    Andersen, Ole B.
    [J]. ADVANCES IN SPACE RESEARCH, 2021, 68 (02) : 496 - 503
  • [10] Sea level variability in Gulf of Guinea from satellite altimetry
    Ghomsi, Franck Eitel Kemgang
    Raj, Roshin P.
    Bonaduce, Antonio
    Halo, Issufo
    Nyberg, Bjoern
    Cazenave, Anny
    Rouault, Mathieu
    Johannessen, Ola M.
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)