COMPACT RETRACTIONS AND SCHAUDER DECOMPOSITIONS IN BANACH SPACES

被引:6
|
作者
Hajek, Petr [1 ]
Medina, Ruben [1 ,2 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Math, Tech 2, Prague 16627 6, Czech Republic
[2] Univ Granada, Fac Ciencias, Dept Anal Matemat, Granada 18071, Spain
关键词
Lipschitz retractions; approximation properties; APPROXIMATION PROPERTY;
D O I
10.1090/tran/8807
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a separable Banach space. We give an almost characterization of the existence of a Finite Dimensional Decomposition (FDD for short) for X in terms of Lipschitz retractions onto generating compact subsets K of X. In one direction, if X admits an FDD then we construct a Lipschitz retraction onto a small generating convex and compact set K. On the other hand, we prove that if X admits a "small" generating compact Lipschitz retract then X has the p-property. It is still unknown if the p-property is isomorphically equivalent to the existence of an FDD. For dual Banach spaces this is true, so our results give a characterization of the FDD property for dual Banach spaces X. We give an example of a small generating convex compact set which is not a Lipschitz retract of C[0, 1], although it is contained in a small convex Lipschitz retract and contains another one. We characterize isomorphically Hilbertian spaces as those Banach spaces X for which every convex and compact subset is a Lipschitz retract of X. Finally, we prove that a convex and compact set K in any Banach space with a Uniformly Rotund in Every Direction norm is a uniform retract, of every bounded set containing it, via the nearest point map.
引用
收藏
页码:1343 / 1372
页数:30
相关论文
共 50 条
  • [41] Decompositions of compact metric spaces
    Wilder, RL
    AMERICAN JOURNAL OF MATHEMATICS, 1941, 63 : 691 - 697
  • [42] An explicit construction of sunny nonexpansive retractions in Banach spaces
    Arkady Aleyner
    Simeon Reich
    Fixed Point Theory and Applications, 2005
  • [43] HAUSDORFF NORMS OF RETRACTIONS IN BANACH SPACES OF CONTINUOUS FUNCTIONS
    Colao, Vittorio
    Trombetta, Alessandro
    Trombetta, Giulio
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (04): : 1139 - 1158
  • [44] DECOMPOSITIONS OF COMPACT HAUSDORFF SPACES
    RAKOWSKI, ZM
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1975, 23 (10): : 1089 - 1091
  • [45] Construction of Schauder decomposition on Banach spaces of periodic functions
    Goh, SS
    Lee, SL
    Shen, ZW
    Tang, WS
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1998, 41 : 61 - 91
  • [46] An explicit construction of sunny nonexpansive retractions in Banach spaces
    Aleyner, Arkady
    Reich, Simeon
    FIXED POINT THEORY AND APPLICATIONS, 2005, 2005 (03) : 295 - 305
  • [47] On shrinking and boundedly complete Schauder frames of Banach spaces
    Liu, Rui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 385 - 398
  • [48] FINITE-DIMENSIONAL SCHAUDER DECOMPOSITIONS IN CERTAIN FRECHET SPACES
    JOHNSON, WB
    COLLOQUIUM MATHEMATICUM, 1971, 23 (02) : 269 - &
  • [49] ERGODIC RETRACTIONS FOR SEMIGROUPS IN STRICTLY CONVEX BANACH SPACES
    Kaczor, Wieslawa
    Reich, Simeon
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (04): : 1447 - 1456
  • [50] Schauder bases in Lipschitz free spaces over nets in Banach spaces
    Hajek, Petr
    Medina, Ruben
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 512 (02)