The non-abelian Hodge correspondence on some non-Kahler manifolds

被引:1
|
作者
Pan, Changpeng [1 ]
Zhang, Chuanjing [2 ]
Zhang, Xi [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
projectively flat bundle; Higgs bundle; non-Kahler; the Hermitian-Yang-Mills flow; epsilon-regularity theorem; YANG-MILLS CONNECTIONS; FLAT VECTOR-BUNDLES; HIGGS BUNDLES; HARMONIC MAPS; REPRESENTATIONS; FLOW; EXISTENCE; METRICS; SURFACE;
D O I
10.1007/s11425-022-2053-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-abelian Hodge correspondence was established by Corlette (1988), Donaldson (1987), Hitchin (1987) and Simpson (1988, 1992). It states that on a compact Kahler manifold (X, omega), there is a one-to-one correspondence between the moduli space of semi-simple flat complex vector bundles and the moduli space of poly-stable Higgs bundles with vanishing Chern numbers. In this paper, we extend this correspondence to the projectively flat bundles over some non-Kahler manifold cases. Firstly, we prove an existence theorem of Poisson metrics on simple projectively flat bundles over compact Hermitian manifolds. As its application, we obtain a vanishing theorem of characteristic classes of projectively flat bundles. Secondly, on compact Hermitian manifolds which satisfy Gauduchon and astheno-Kaller conditions, we combine the continuity method and the heat flow method to prove that every semi-stable Higgs bundle with Delta(E, (partial derivative) over bar (E)) . [omega(n-2)] = 0 must be an extension of stable Higgs bundles. Using the above results, over some compact non-Kahler manifolds (M, omega), we establish an equivalence of categories between the category of semi-stable (poly-stable) Higgs bundles (E, (partial derivative) over bar (E), phi) with Delta(E, (partial derivative) over bar (E)) . [omega(n-2)] = 0 and the category of (semi-simple) projectively flat bundles (E, D) with root-1F(D) = alpha circle times Id(E) for some real (1,1)-form alpha.
引用
收藏
页码:2545 / 2588
页数:44
相关论文
共 50 条
  • [41] TORUS MANIFOLDS WITH NON-ABELIAN SYMMETRIES
    Wiemeler, Michael
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (03) : 1427 - 1487
  • [42] Group actions, non-Kahler complex manifolds and SKT structures
    Poddar, Mainak
    Thakur, Ajay Singh
    COMPLEX MANIFOLDS, 2018, 5 (01): : 9 - 25
  • [43] Supersymmetric configurations, geometric transitions and new non-Kahler manifolds
    Chen, Fang
    Dasgupta, Keshav
    Franche, Paul
    Katz, Sheldon
    Tatar, Radu
    NUCLEAR PHYSICS B, 2011, 852 (03) : 553 - 591
  • [44] Hyperbolic geometry and non-Kahler manifolds with trivial canonical bundle
    Fine, Joel
    Panov, Dmitri
    GEOMETRY & TOPOLOGY, 2010, 14 (03) : 1723 - 1763
  • [45] On manifolds with trivial logarithmic tangent bundle: The non-kahler case
    Winkelmann, Joerg
    TRANSFORMATION GROUPS, 2008, 13 (01) : 195 - 209
  • [46] Kahler versus non-Kahler compactifications
    Becker, M
    Dasgupta, K
    QUANTUM THEORY AND SYMMETRIES, 2004, : 459 - 472
  • [47] On non-Kahler compact complex manifolds with balanced and astheno-Kahler metrics
    Latorre, Adela
    Ugarte, Luis
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (01) : 90 - 93
  • [48] Locally Conformal Hermitian Metrics on Complex Non-Kahler Manifolds
    Angella, Daniele
    Ugarte, Luis
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2105 - 2145
  • [49] Q-OSCILLATORS, NON-KAHLER MANIFOLDS AND CONSTRAINED DYNAMICS
    SHABANOV, SV
    MODERN PHYSICS LETTERS A, 1995, 10 (12) : 941 - 948
  • [50] Numerically flat holomorphic bundles over non-Kahler manifolds
    Li, Chao
    Nie, Yanci
    Zhang, Xi
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (790): : 267 - 285