Spectrum of quaternion signals associated with quaternion linear canonical transform

被引:0
|
作者
Prasad, Akhilesh [1 ]
Kundu, Manab [2 ]
机构
[1] Indian Inst Technol, Indian Sch Mines, Dept Math & Comp, Dhanbad 826004, India
[2] SRM Univ AP, Dept Math, Amaravati 522240, Andhra Pradesh, India
关键词
Quaternion linear canonical transform; Quaternion signal; Real Paley-Wiener theorem; Boas theorem; Riemann-Lebesgue theorem; PALEY-WIENER THEOREMS;
D O I
10.1016/j.jfranklin.2023.12.023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years quaternion linear canonical transform (QLCT) has emerged due to its applications in various fields, including image and signal processing. This article discusses two spectrum-related theorems (real Paley-Wiener and Boas type). The real Paley-Wiener type theorem is formulated to describe the character of a compactly supported two-sided quaternion linear canonical transformed (QLCT) signal. The Boas -type theorem is also discussed to explain the property of right-sided QLCT of signals that vanish in the neighborhood of origin. Some potential applications of these theorems on some particular quaternion -type operators are also discussed.
引用
收藏
页码:764 / 775
页数:12
相关论文
共 50 条
  • [21] The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform
    El Kassimi, M.
    El Haoui, Y.
    Fahlaoui, S.
    ANALYSIS MATHEMATICA, 2019, 45 (04) : 787 - 802
  • [22] The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform
    M. El Kassimi
    Y. El Haoui
    S. Fahlaoui
    Analysis Mathematica, 2019, 45 : 787 - 802
  • [23] A Variation on Inequality for Quaternion Fourier Transform, Modified Convolution and Correlation Theorems for General Quaternion Linear Canonical Transform
    Bahri, Mawardi
    Karim, Samsul Ariffin Abdul
    SYMMETRY-BASEL, 2022, 14 (07):
  • [24] One dimensional quaternion linear canonical transform in probability theory
    Siddiqui, Saima
    Samad, Muhammad Adnan
    Ismoiljonovich, Fayzullayev Djamshid
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, : 9419 - 9430
  • [25] Generalized uncertainty principles for offset quaternion linear canonical transform
    Bahri, Mawardi
    JOURNAL OF ANALYSIS, 2024, 32 (5): : 2525 - 2538
  • [26] Uncertainty Principle for the Quaternion Linear Canonical Transform in Terms of Covariance
    Yanna Zhang
    Journal of Beijing Institute of Technology, 2021, 30 (03) : 238 - 243
  • [27] Uncertainty principles and applications of quaternion windowed linear canonical transform
    Prasad A.
    Kundu M.
    Optik, 2023, 272
  • [28] Dini-Lipschitz functions for the quaternion linear canonical transform
    Bouhlal, A.
    Achak, A.
    Daher, R.
    Safouane, N.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 199 - 215
  • [29] Uncertainty Principle for the Quaternion Linear Canonical Transform in Terms of Covariance
    Zhang Y.
    Journal of Beijing Institute of Technology (English Edition), 2021, 30 (03): : 238 - 243
  • [30] Continuous and discrete quaternion linear canonical wave packet transform?
    Rejini, M. Thanga
    Moorthy, R. Subash
    OPTIK, 2022, 270