TAssembly: Data-driven fractured object assembly using a linear template model

被引:2
|
作者
Deng, Ziyue [1 ]
Jiang, Junfeng [2 ]
Chen, Zhengming [2 ]
Zhang, Wenxi [3 ]
Yao, Qingqiang [4 ,5 ]
Song, Chen [6 ]
Sun, Yifan [6 ]
Yang, Zhenpei [6 ]
Yan, Siming [6 ]
Huang, Qixing [6 ]
Bajaj, Chandrajit [6 ]
机构
[1] Hohai Univ, Coll Comp Sci, Informat Div, Nanjing 210000, Peoples R China
[2] Hohai Univ, Coll IOT Engn, Informat Div, Changzhou 213000, Peoples R China
[3] Liyang Peoples Hosp, Orthopaed Dept, Changzhou 213300, Peoples R China
[4] Jiangsu Prov Hosp, Dept Orthopaed Surg, Nanjing 210000, Peoples R China
[5] Nanjing Med Univ, Affiliated Hosp 1, Nanjing 210000, Peoples R China
[6] Univ Texas Austin, Austin, TX USA
来源
COMPUTERS & GRAPHICS-UK | 2023年 / 113卷
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Artificial intelligence; Optimization; Point-based graphics; Registration; Shape analysis; Shape matching and retrieval; SHAPE; REDUCTION; DOCKING;
D O I
10.1016/j.cag.2023.05.003
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Fractured object assembly is a fundamental problem across many disciplines such as digital archae-ology, accident recovery, paleontology, cranio-facial and orthopaedic surgical repair, and many more. With advances in 3D acquisition devices and improved fidelity models of fractured pieces, a flurry of semi-automatic and automatic computational assembly solutions have been developed. These methods have the potential to reduce human labor in assembling fractured objects. The challenge is to balance the time efficiency with the fidelity of the reconstructed assembly. This paper introduces TAssembly, a data-driven approach to fractured object assembly. TAssembly leverages learned feature descriptors of the underlying objects. Its assembly pipeline seamlessly integrates multiple objective terms, including feature matching, rigid matching, and regularization for matching and stitching adjacent pieces. Many experimental results show that TAssembly significantly outperforms previous fractured object assembly methods.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页码:102 / 112
页数:11
相关论文
共 50 条
  • [1] Object Model Research Based on Data-Driven
    Zhang, Guofei
    Du, Xiang
    Wang, Lu
    [J]. Proceedings of the 2016 International Conference on Engineering and Technology Innovations, 2016, 43 : 88 - 92
  • [2] Toward a Data-Driven Template Model for Quadrupedal Locomotion
    Fawcett, Randall T.
    Afsari, Kereshmeh
    Ames, Aaron D.
    Hamed, Kaveh Akbari
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03) : 7636 - 7643
  • [3] Data-Driven Model Falsification and Uncertainty Quantification for Fractured Reservoirs
    Fang, Junling
    Gong, Bin
    Caers, Jef
    [J]. ENGINEERING, 2022, 18 : 116 - 128
  • [4] Data-Driven Model Falsification and Uncertainty Quantification for Fractured Reservoirs
    Junling Fang
    Bin Gong
    Jef Caers
    [J]. Engineering, 2022, 18 (11) : 116 - 128
  • [5] Model and data-driven representations of the sleep cycle using locally linear embedding
    Beth A Lopour
    Heidi E Kirsch
    James W Sleigh
    Andrew J Szeri
    [J]. BMC Neuroscience, 10 (Suppl 1)
  • [6] Assembly quality evaluation for linear axis of machine tool using data-driven modeling approach
    Yang Hui
    Xuesong Mei
    Gedong Jiang
    Fei Zhao
    Ziwei Ma
    Tao Tao
    [J]. Journal of Intelligent Manufacturing, 2022, 33 : 753 - 769
  • [7] Assembly quality evaluation for linear axis of machine tool using data-driven modeling approach
    Hui, Yang
    Mei, Xuesong
    Jiang, Gedong
    Zhao, Fei
    Ma, Ziwei
    Tao, Tao
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (03) : 753 - 769
  • [8] Data-Driven Object Manipulation in Images
    Goldberg, Chen
    Chen, Tao
    Zhang, Fang-Lue
    Shamir, Ariel
    Hu, Shi-Min
    [J]. COMPUTER GRAPHICS FORUM, 2012, 31 (02) : 265 - 274
  • [9] Data-Driven Template Discovery Using Graph Convolutional Neural Networks
    Joaristi, Mikel
    Purohit, Sumit
    Deshmukh, Rahul
    Chin, George
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2534 - 2538
  • [10] Data-Driven Control of Positive Linear Systems using Linear Programming
    Miller, Jared
    Dai, Tianyu
    Sznaier, Mario
    Shafai, Bahram
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1588 - 1594