Optimization of Electrical Properties of Nanocrystallized Na3M2(PO4)2F3 NASICON-like Glasses (M = V, Ti, Fe)

被引:3
|
作者
Nowagiel, Maciej [1 ]
Hul, Anton [1 ]
Kazakevicius, Edvardas [2 ]
Kezionis, Algimantas [2 ]
Garbarczyk, Jerzy E. [1 ]
Pietrzak, Tomasz K. [1 ]
机构
[1] Warsaw Univ Technol, Fac Phys, Koszykowa 75, PL-00662 Warsaw, Poland
[2] Vilnius Univ, Fac Phys, Sauletekio 9, LT-10222 Vilnius, Lithuania
关键词
glass-ceramics; nanomaterials; cathode materials; nanocrystallization; alluaudite; CONDUCTIVITY; TEMPERATURE; NA;
D O I
10.3390/coatings13030482
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, an interest in NASICON-type materials revived, as they are considered potential cathode materials in sodium-ion batteries used in large-scale energy storage. We applied a facile technique of thermal nanocrystallization of glassy analogs of these compounds to enhance their electrical parameters. Six nanomaterials of the Na3M2(PO4)(2)F-3 (M = V, Ti, Fe) system were studied. Samples with nominal compositions of Na3V2(PO4)(2)F-3, Na3Ti2(PO4)(2)F-3, Na3Fe2(PO4)(2)F-3, Na3TiV(PO4)(2)F-3, Na3FeV(PO4)(2)F-3 and Na3FeTi(PO4)(2)F-3 have been synthesized as glasses using the melt-quenching method. X-ray diffraction measurements were conducted for as-synthesized samples and after heating at elevated temperatures to investigate the structure. Extensive impedance measurements allowed us to optimize the nanocrystallization process to enhance the electrical conductivity of cathode nanomaterials. Such a procedure resulted in samples with the conductivity at room temperature ranging from 1x10(-9) up to 8x10(-5) S/cm. We carried out in situ impedance spectroscopy measurements (in an ultra-high-frequency range up to 10 GHz) and compared them with thermal events observed in differential thermal analysis studies.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Structural phase transitions evidenced by Mössbauer spectrometry in a ferric fluorophosphate: Na3Fe2(PO4)2F3
    Laboratoire des Fluorures, UPRESA CNRS 6010, Université du Maine, F-72085 Le Mans Cedex 9, France
    不详
    Hyperfine Interact., 3-4 (365-369):
  • [22] Structural phase transitions evidenced by Mössbauer spectrometry in a ferric fluorophosphate: Na3Fe2(PO4)2F3
    J.M. Le Meins
    G. Courbion
    J.‐M. Grenèche
    Hyperfine Interactions, 1999, 122 : 365 - 369
  • [23] Structural phase transitions evidenced by Mössbauer spectrometry in a ferric fluorophosphate: Na3Fe2(PO4)2F3
    Le Meins, J.M.
    Courbion, G.
    Grenèche, J.M.
    Hyperfine Interactions, 1999, 122 (3-4): : 365 - 369
  • [24] Aluminum substitution for vanadium in the Na3V2(PO4)2F3 and Na3V2(PO4)2FO2 type materials
    Olchowka, Jacob
    Nguyen, Long H. B.
    Broux, Thibault
    Camacho, Paula Sanz
    Petit, Emmanuel
    Fauth, Francois
    Cartier, Dany
    Masquelier, Christian
    Croguennec, Laurence
    CHEMICAL COMMUNICATIONS, 2019, 55 (78) : 11719 - 11722
  • [25] Improvement of the electrochemical properties of Na2MnPO4F by dual modification of Na3V2(PO4)2F3 and Ti3C2-CQDs
    Shaocong Wang
    Wei Li
    Dan Sun
    Yifei Guo
    Zheng Liu
    Guo-Cheng Han
    Ionics, 2023, 29 : 4639 - 4645
  • [26] Improvement of the electrochemical properties of Na2MnPO4F by dual modification of Na3V2(PO4)2F3 and Ti3C2-CQDs
    Wang, Shaocong
    Li, Wei
    Sun, Dan
    Guo, Yifei
    Liu, Zheng
    Han, Guo-Cheng
    IONICS, 2023, 29 (11) : 4639 - 4645
  • [27] THE NASICON-LIKE COPPER(II) TITANIUM PHOSPHATE CU0.50TI2(PO4)3
    ELJAZOULI, A
    SOUBEYROUX, JL
    DANCE, JM
    LEFLEM, G
    JOURNAL OF SOLID STATE CHEMISTRY, 1986, 65 (03) : 351 - 355
  • [28] The Dipole Ordering and the Ionic Conductivity in the NASICON-Like Structures of the Na3Sc2(PO4)3 Type
    Nogai, A. S.
    Nogai, A. A.
    Stefanovich, S. Yu.
    Solikhodzha, Zh. M.
    Uskenbaev, D. E.
    PHYSICS OF THE SOLID STATE, 2019, 61 (11) : 1985 - 1992
  • [29] NASICON-type Na3V2(PO4)3
    Zatovsky, Igor V.
    ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE, 2010, 66 : I12 - U194
  • [30] High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries
    Yang, Ze
    Li, Guolong
    Sun, Jingying
    Xie, Lixin
    Jiang, Yan
    Huang, Yunhui
    Chen, Shuo
    ENERGY STORAGE MATERIALS, 2020, 25 (25) : 724 - 730