A Family of Transformed Difference Schemes for Nonlinear Time-Fractional Equations

被引:3
|
作者
Qin, Hongyu [1 ]
Chen, Xiaoli [2 ,3 ]
Zhou, Boya [4 ]
机构
[1] Wuhan Inst Technol, Sch Math & Phys, Wuhan 430205, Peoples R China
[2] Natl Univ Singapore, Inst Funct Intelligent Mat, Singapore 117544, Singapore
[3] Natl Univ Singapore, Dept Math, Singapore 119077, Singapore
[4] Foshan Univ, Sch Math & Big Data, Foshan 528000, Peoples R China
基金
中国国家自然科学基金;
关键词
time-fractional parabolic problems; change in variable; convergence; optimal error estimates; linearized schemes; CONVOLUTION QUADRATURE; NUMERICAL-METHODS;
D O I
10.3390/fractalfract7010096
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a class of finite difference methods for numerically solving fractional differential equations. Such numerical schemes are developed based on the change in variable and piecewise interpolations. Error analysis of the numerical schemes is obtained by using a Gronwall-type inequality. Numerical examples are given to confirm the theoretical results.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] On time-fractional relativistic diffusion equations
    Narn-Rueih Shieh
    Journal of Pseudo-Differential Operators and Applications, 2012, 3 : 229 - 237
  • [42] On a class of time-fractional differential equations
    Li, Cheng-Gang
    Kostic, Marko
    Li, Miao
    Piskarev, Sergey
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) : 639 - 668
  • [43] On a class of time-fractional differential equations
    Cheng-Gang Li
    Marko Kostić
    Miao Li
    Sergey Piskarev
    Fractional Calculus and Applied Analysis, 2012, 15 : 639 - 668
  • [44] On time-fractional relativistic diffusion equations
    Shieh, Narn-Rueih
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2012, 3 (02) : 229 - 237
  • [45] SYSTEMS OF ABSTRACT TIME-FRACTIONAL EQUATIONS
    Kostic, Marko
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2014, 95 (109): : 119 - 132
  • [46] Approximate Time-Fractional Differential Equations
    Tavan, Saber
    Rad, Mohammad Jahangiri
    Shamloo, Ali Salimi
    Mahmoudi, Yaghoub
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2024, 2024
  • [47] Exact solutions of generalized nonlinear time-fractional reaction–diffusion equations with time delay
    P. Prakash
    Sangita Choudhary
    Varsha Daftardar-Gejji
    The European Physical Journal Plus, 135
  • [48] Optimal feedback control for fractional evolution equations with nonlinear perturbation of the time-fractional derivative term
    Suechoei, Apassara
    Ngiamsunthorn, Parinya Sa
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [49] Optimal feedback control for fractional evolution equations with nonlinear perturbation of the time-fractional derivative term
    Apassara Suechoei
    Parinya Sa Ngiamsunthorn
    Boundary Value Problems, 2022
  • [50] On Time-Fractional Cylindrical Nonlinear Equation
    HGAbdelwahed
    EKElShewy
    AAMahmoud
    Chinese Physics Letters, 2016, 33 (11) : 66 - 70