Exploiting Topological Darkness in Photonic Crystal Slabs for Spatiotemporal Vortex Generation

被引:0
|
作者
Liu, Wenzhe [1 ]
Wang, Jiajun [2 ,3 ]
Tang, Yang [2 ,3 ]
Wang, Xinhao [2 ,3 ]
Zhao, Xingqi [2 ,3 ]
Shi, Lei [2 ,3 ,4 ,5 ]
Zi, Jian [2 ,3 ,4 ,5 ]
Chan, C. T. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong 999077, Peoples R China
[2] Fudan Univ, State Key Lab Surface Phys, Key Lab Micro & Nanophoton Struct, Minist Educ, Shanghai 200433, Peoples R China
[3] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[4] Fudan Univ, Inst Nanoelect Devices & Quantum Comp, Shanghai 200438, Peoples R China
[5] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 国家自然科学基金重大项目;
关键词
spatiotemporal optical vortex; topologicaldarkness; photonic crystal slab; polarization conversion; ORBITAL ANGULAR-MOMENTUM;
D O I
10.1021/acs.nanolett.3c04348
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Spatiotemporal optical vortices (STOVs) with swirling phase singularities in space and time hold great promise for a wide range of applications across diverse fields. However, current approaches to generate STOVs lack integrability and rely on bulky free-space optical components. Here, we demonstrate routine STOV generation by harnessing the topological darkness phenomenon of a photonic crystal slab. Complete polarization conversion enforced by symmetry enables topological darkness to arise from photonic bands of guided resonances, imprinting vortex singularities onto an ultrashort reflected pulse. Utilizing time-resolved spatial mapping, we provide the first observation of STOV generation using a photonic crystal slab, revealing the imprinted STOV structure manifested as a curved vortex line in the pulse profile in space and time. Our work establishes photonic crystal slabs as a versatile and accessible platform for engineering STOVs and harnessing the topological darkness in nanophotonics.
引用
下载
收藏
页码:943 / 949
页数:7
相关论文
共 50 条
  • [41] Analysis of guided resonances in photonic crystal slabs
    Fan, SH
    Joannopoulos, JD
    PHYSICAL REVIEW B, 2002, 65 (23) : 1 - 8
  • [42] Fano resonance principles in photonic crystal slabs
    Zhou, Weidong
    Fan, Shanhui
    PHOTONIC CRYSTAL METASURFACE OPTOELECTRONICS, 2019, 100 : 1 - 12
  • [43] Scattering at sidewall roughness in photonic crystal slabs
    Bogaerts, W
    Bienstman, P
    Baets, R
    OPTICS LETTERS, 2003, 28 (09) : 689 - 691
  • [44] Functional components in SOI photonic crystal slabs
    Shinya, A
    Notomi, M
    Kuramochi, E
    Shoji, T
    Watanabe, T
    Tsuchizawa, T
    Yamada, K
    Morita, H
    PHOTONIC CRYSTAL MATERIALS AND DEVICES, 2003, 5000 : 104 - 117
  • [45] Photonic crystal waveguide switches with movable slabs
    Hane, Kazuhiro
    Umemori, Ken-ichi
    Kanamori, Yoshiaki
    IEICE TRANSACTIONS ON ELECTRONICS, 2007, E90C (01): : 51 - 58
  • [46] Band structures in nonlinear photonic crystal slabs
    I. S. Maksymov
    L. F. Marsal
    J. Pallarès
    Optical and Quantum Electronics, 2005, 37 : 161 - 169
  • [47] Band structure of honeycomb photonic crystal slabs
    Weng, Tai-I
    Guo, G. Y.
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (09)
  • [48] Directional spontaneous emission in photonic crystal slabs
    Navarro-Baron, Erik P.
    Vinck-Posada, Herbert
    Gonzalez-Tudela, Alejandro
    NANOPHOTONICS, 2024, 13 (11) : 1963 - 1973
  • [49] Control of exceptional points in photonic crystal slabs
    Kaminski, Piotr M.
    Taghizadeh, Alireza
    Breinbjerg, Olav
    Mork, Jesper
    Arslanagic, Samel
    OPTICS LETTERS, 2017, 42 (15) : 2866 - 2869
  • [50] Twisted Bilayer Dielectric Photonic Crystal Slabs
    Tang, Haoning
    Du, Fan
    Carr, Stephen
    DeVault, Clayton
    Mazur, Eric
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,