Track-Oriented Marginal Poisson Multi-Bernoulli Mixture Filter for Extended Target Tracking

被引:2
|
作者
Du Haocui [1 ,2 ]
Xie Weixin [1 ,2 ]
Liu Zongxiang [1 ,2 ]
Li Liangqun [1 ,2 ]
机构
[1] Shenzhen Univ, ATR Key Lab, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Extended target tracking; Random finite set; Poisson multi-Bernoulli mixture; Poisson point process; Marginal distribution; Target trajectory; ASSOCIATION; DERIVATION; ALGORITHM; OBJECT;
D O I
10.23919/cje.2021.00.194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we derive and propose a track-oriented marginal Poisson multi-Bernoulli mixture (TO-MPMBM) filter to address the problem that the standard random finite set filters cannot build continuous trajectories for multiple extended targets. First, the Poisson point process model and the multi-Bernoulli mixture (MBM) model are used to establish the set of birth trajectories and the set of existing trajectories, respectively. Second, the proposed filter recursively propagates the marginal association distributions and the Poisson multi-Bernoulli mixture (PMBM) density over the set of alive trajectories. Finally, after pruning and merging process, the trajectories with existence probability greater than the given threshold are extracted as the estimated target trajectories. A comparison of the proposed filter with the existing trajectory filters in two classical scenarios confirms the validity and reliability of the TO-MPMBM filter.
引用
收藏
页码:1106 / 1119
页数:14
相关论文
共 50 条
  • [31] Tracking multiple extended targets with multi-Bernoulli filter
    Hu, Qi
    Ji, Hongbing
    Zhang, Yongquan
    [J]. IET SIGNAL PROCESSING, 2019, 13 (04) : 443 - 455
  • [32] Multisensor Poisson Multi-Bernoulli Filter for Joint Target-Sensor State Tracking
    Frohle, Markus
    Lindberg, Christopher
    Granstrom, Karl
    Wymeersch, Henk
    [J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2019, 4 (04): : 609 - 621
  • [33] Extended Target Fast Labeled Multi-Bernoulli Filter
    Cheng, Xuan
    Ji, Hongbing
    Zhang, Yongquan
    [J]. RADIOENGINEERING, 2023, 32 (03) : 356 - 370
  • [34] Space Debris Tracking with the Poisson Labeled Multi-Bernoulli Filter
    Cament, Leonardo
    Adams, Martin
    Barrios, Pablo
    [J]. SENSORS, 2021, 21 (11)
  • [35] Robust Poisson multi-Bernoulli mixture filter using adaptive birth distributions for extended targets
    Wu, Sunyong
    Zhou, Yusong
    Xie, Yun
    Xue, Qiutiao
    [J]. DIGITAL SIGNAL PROCESSING, 2022, 126
  • [36] Poisson Multi-Bernoulli Mixture Filter With General Target-Generated Measurements and Arbitrary Clutter
    Garcia-Fernandez, Angel F.
    Xia, Yuxuan
    Svensson, Lennart
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1895 - 1906
  • [37] A Partitioned Poisson Multi-Bernoulli Filter
    Su, Zhenzhen
    Tian, Cong
    Ji, Hongbing
    Zhang, Yongquan
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (14) : 16002 - 16012
  • [38] Box-Particle Labeled Multi-Bernoulli Filter for Multiple Extended Target Tracking
    Li, Miao
    Lin, Zaiping
    An, Wei
    Zhou, Yiyu
    [J]. RADIOENGINEERING, 2016, 25 (03) : 527 - 535
  • [39] A robust Poisson multi-Bernoulli filter for multi-target tracking based on arithmetic average fusion
    Zhenzhen SU
    Hongbing JI
    Cong TIAN
    Yongquan ZHANG
    [J]. Chinese Journal of Aeronautics, 2023, (02) : 179 - 190
  • [40] Robust Poisson Multi-Bernoulli Mixture Filter With Unknown Detection Probability
    Li, Guchong
    Kong, Lingjiang
    Yi, Wei
    Li, Xiaolong
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (01) : 886 - 899