Track-Oriented Marginal Poisson Multi-Bernoulli Mixture Filter for Extended Target Tracking

被引:2
|
作者
Du Haocui [1 ,2 ]
Xie Weixin [1 ,2 ]
Liu Zongxiang [1 ,2 ]
Li Liangqun [1 ,2 ]
机构
[1] Shenzhen Univ, ATR Key Lab, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Extended target tracking; Random finite set; Poisson multi-Bernoulli mixture; Poisson point process; Marginal distribution; Target trajectory; ASSOCIATION; DERIVATION; ALGORITHM; OBJECT;
D O I
10.23919/cje.2021.00.194
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we derive and propose a track-oriented marginal Poisson multi-Bernoulli mixture (TO-MPMBM) filter to address the problem that the standard random finite set filters cannot build continuous trajectories for multiple extended targets. First, the Poisson point process model and the multi-Bernoulli mixture (MBM) model are used to establish the set of birth trajectories and the set of existing trajectories, respectively. Second, the proposed filter recursively propagates the marginal association distributions and the Poisson multi-Bernoulli mixture (PMBM) density over the set of alive trajectories. Finally, after pruning and merging process, the trajectories with existence probability greater than the given threshold are extracted as the estimated target trajectories. A comparison of the proposed filter with the existing trajectory filters in two classical scenarios confirms the validity and reliability of the TO-MPMBM filter.
引用
收藏
页码:1106 / 1119
页数:14
相关论文
共 50 条
  • [1] Track-Oriented Marginal Poisson Multi-Bernoulli Mixture Filter for Extended Target Tracking
    DU Haocui
    XIE Weixin
    LIU Zongxiang
    LI Liangqun
    [J]. Chinese Journal of Electronics, 2023, 32 (05) : 1106 - 1119
  • [2] Sequential Monte Carlo Implementation of the Track-Oriented Marginal Multi-Bernoulli/Poisson Filter
    Kropfreiter, Thomas
    Meyer, Florian
    Hlawatsch, Franz
    [J]. 2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 972 - 979
  • [3] Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter
    Du, Haocui
    Xie, Weixin
    [J]. SENSORS, 2020, 20 (18) : 1 - 15
  • [4] The Multiple Model Poisson Multi-Bernoulli Mixture Filter for Extended Target Tracking
    Xie, Xingxiang
    Wang, Yang
    Guo, Junqi
    Zhou, Rundong
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (13) : 14304 - 14314
  • [5] An Improved Measurement-Oriented Marginal Multi-Bernoulli/Poisson Filter
    Su, Zhen-zhen
    Ji, Hong-bing
    Zhang, Yong-quan
    [J]. RADIOENGINEERING, 2019, 28 (01) : 191 - 198
  • [6] A Fast Poisson Multi-Bernoulli Filter for Multiple Target Tracking
    Kusumoto, Tetsuya
    Yoneda, Masaki
    Nishi, Takafumi
    Ogawa, Takashi
    [J]. 2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
  • [7] Bernoulli merging for the Poisson multi-Bernoulli mixture filter
    Fontana, Marco
    Garcia-Fernandez, Angel F.
    Maskell, Simon
    [J]. PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 262 - 269
  • [8] A gaussian mixture extended-target multi-Bernoulli filter
    Zhang, Guanghua
    Lian, Feng
    Han, Chongzhao
    Yao, Lingling
    [J]. Lian, Feng, 1600, Xi'an Jiaotong University (48): : 9 - 14
  • [9] A Poisson Multi-Bernoulli Mixture Filter for Coexisting Point and Extended Targets
    Garcia-Fernandez, Angel
    Williams, Jason
    Svensson, Lennart
    Xia, Yuxuan
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 2600 - 2610
  • [10] Space Extended Target Tracking Using Poisson Multi-Bernoulli Mixture Filtering with Nonlinear Measurements
    Hua, Bing
    Yang, Guang
    Wu, Yunhua
    Chen, Zhiming
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2024, 47 (01) : 87 - 98