The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background

被引:737
|
作者
Agazie, Gabriella [1 ]
Anumarlapudi, Akash [1 ]
Archibald, Anne M. [2 ]
Arzoumanian, Zaven [3 ]
Baker, Paul T. [4 ]
Becsy, Bence [5 ]
Blecha, Laura [6 ]
Brazier, Adam [7 ,8 ,9 ]
Brook, Paul R. [10 ,11 ]
Burke-Spolaor, Sarah [12 ,13 ]
Burnette, Rand [5 ]
Case, Robin [5 ]
Charisi, Maria [14 ]
Chatterjee, Shami [7 ,8 ]
Chatziioannou, Katerina [15 ]
Cheeseboro, Belinda D. [12 ,13 ]
Chen, Siyuan [16 ]
Cohen, Tyler [17 ]
Cordes, James M. [7 ,8 ]
Cornish, Neil [18 ]
Crawford, Fronefield [19 ]
Cromartie, H. Thankful [7 ,8 ]
Crowter, Kathryn [20 ]
Cutler, Curt J. [15 ,21 ]
DeCesar, Megan E. [22 ]
DeGan, Dallas [5 ]
Demorest, Paul B. [23 ]
Deng, Heling [5 ]
Dolch, Timothy [24 ,25 ]
Drachler, Brendan [26 ,27 ]
Ellis, Justin A. [28 ]
Ferrara, Elizabeth C. [29 ,30 ,31 ]
Fiore, William [12 ,13 ]
Fonseca, Emmanuel [12 ,13 ]
Freedman, Gabriel E. [1 ]
Garver-Daniels, Nate [12 ,13 ]
Gentile, Peter A. [12 ,13 ]
Gersbach, Kyle A. [14 ]
Glaser, Joseph [12 ,13 ]
Good, Deborah C. [32 ,33 ]
Gueltekin, Kayhan [34 ]
Hazboun, Jeffrey S. [5 ]
Hourihane, Sophie [15 ]
Islo, Kristina [1 ]
Jennings, Ross J. [12 ,13 ]
Johnson, Aaron D. [1 ,15 ]
Jones, Megan L. [1 ]
Kaiser, Andrew R. [12 ,13 ]
Kaplan, David L. [1 ]
Kelley, Luke Zoltan [35 ]
机构
[1] Univ Wisconsin Milwaukee, Dept Phys, Ctr Gravitat Cosmol & Astrophys, POB 413, Milwaukee, WI 53201 USA
[2] Newcastle Univ, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[3] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Code 662, Greenbelt, MD 20771 USA
[4] Widener Univ, Dept Phys & Astron, One Univ Pl, Chester, PA 19013 USA
[5] Oregon State Univ, Dept Phys, Corvallis, OR 97331 USA
[6] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
[7] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA
[8] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA
[9] Cornell Univ, Cornell Ctr Adv Comp, Ithaca, NY 14853 USA
[10] Univ Birmingham, Inst Gravitat Wave Astron, Birmingham B15 2TT, W Midlands, England
[11] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
[12] West Virginia Univ, Dept Phys & Astron, POB 6315, Morgantown, WV 26506 USA
[13] West Virginia Univ, Ctr Gravitat Waves & Cosmol, Chestnut Ridge Res Bldg, Morgantown, WV 26505 USA
[14] Vanderbilt Univ, Dept Phys & Astron, 2301 Vanderbilt Pl, Nashville, TN 37235 USA
[15] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[16] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China
[17] New Mexico Inst Min & Technol, Dept Phys, 801 Leroy Pl, Socorro, NM 87801 USA
[18] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA
[19] Franklin & Marshall Coll, Dept Phys & Astron, POB 3003, Lancaster, PA 17604 USA
[20] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada
[21] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[22] George Mason Univ, Naval Res Lab, Washington, DC 20375 USA
[23] Natl Radio Astron Observ, 1003 Lopezville Rd, Socorro, NM 87801 USA
[24] Hillsdale Coll, Dept Phys, 33 E Coll St, Hillsdale, MI 49242 USA
[25] Eureka Sci, 2452 Delmer St,Suite 100, Oakland, CA 94602 USA
[26] Rochester Inst Technol, Sch Phys & Astron, Rochester, NY 14623 USA
[27] Rochester Inst Technol, Lab Multiwavelength Astrophys, Rochester, NY 14623 USA
[28] Bion Hlth, 800 Pk Off Dr, Res Triangle Pk, NC 27709 USA
[29] Univ Maryland, Dept Astron, College Pk, MD 20742 USA
[30] NASA, Ctr Res & Explorat Space Sci & Technol, GSFC, Greenbelt, MD 20771 USA
[31] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[32] Univ Connecticut, Dept Phys, 196 Auditorium Rd,U-3046, Storrs, CT 06269 USA
[33] Flatiron Inst, Ctr Computat Astrophys, 162 5th Ave, New York, NY 10010 USA
[34] Univ Michigan, Dept Astron & Astrophys, Ann Arbor, MI 48109 USA
[35] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall 3411, Berkeley, CA 94720 USA
[36] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA
[37] Univ Washington Bothell, 18115 Campus Way NE, Bothell, WA 98011 USA
[38] SUNY Coll Oswego, Dept Phys, Oswego, NY 13126 USA
[39] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[40] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA
[41] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada
[42] Green Bank Observ, POB 2, Green Bank, WV 24944 USA
[43] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[44] Univ Pacific, Dept Phys, 3601 Pacific Ave, Stockton, CA 95211 USA
[45] Univ Hull, EA Milne Ctr Astrophys, Cottingham Rd, Kingston Upon Hull HU6 7RX, Yorks, England
[46] Univ Hull, Ctr Excellence Data Sci Artificial Intelligence &, Cottingham Rd, Kingston Upon Hull HU6 7RX, Yorks, England
[47] Curtin Univ, Int Ctr Radio Astron Res, Bentley, WA 6102, Australia
[48] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[49] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany
[50] Yale Univ, Dept Astron, 52 Hillhouse Ave, New Haven, CT 06511 USA
基金
美国国家科学基金会; 美国国家航空航天局; 加拿大自然科学与工程研究理事会; 英国科学技术设施理事会;
关键词
BLACK-HOLE BINARIES; PULSAR; SEARCH; LIMITS; SIGNAL; RADIATION; ASTROPHYSICS; EPHEMERIDES; EVOLUTION; GALAXIES;
D O I
10.3847/2041-8213/acdac6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars from the 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. The correlations follow the Hellings-Downs pattern expected for a stochastic gravitational-wave background. The presence of such a gravitational-wave background with a power-law spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess of 1014, and this same model is favored over an uncorrelated common power-law spectrum model with Bayes factors of 200-1000, depending on spectral modeling choices. We have built a statistical background distribution for the latter Bayes factors using a method that removes interpulsar correlations from our data set, finding p = 10-3 (similar to 3s) for the observed Bayes factors in the null no-correlation scenario. A frequentist test statistic built directly as a weighted sum of interpulsar correlations yields p = 5 x 10-5 to 1.9 x 10-4 (similar to 3.5s-4s). Assuming a fiducial f -2/3 characteristic strain spectrum, as appropriate for an ensemble of binary supermassive black hole inspirals, the strain amplitude is 2.4 0.6 100.7 ' 15 -+ - (median + 90% credible interval) at a reference frequency of 1 yr-1. The inferred gravitationalwave background amplitude and spectrum are consistent with astrophysical expectations for a signal from a population of supermassive black hole binaries, although more exotic cosmological and astrophysical sources cannot be excluded. The observation of Hellings-Downs correlations points to the gravitational-wave origin of this signal.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Gravitational-wave Geodesy: A New Tool for Validating Detection of the Stochastic Gravitational-wave Background
    Callister, T. A.
    Coughlin, M. W.
    Kanner, J. B.
    ASTROPHYSICAL JOURNAL LETTERS, 2018, 869 (02)
  • [42] Gravitational wave complementarity and impact of NANOGrav data on gravitational leptogenesis
    Samanta, Rome
    Datta, Satyabrata
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
  • [43] Gravitational wave complementarity and impact of NANOGrav data on gravitational leptogenesis
    Rome Samanta
    Satyabrata Datta
    Journal of High Energy Physics, 2021
  • [44] The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries
    Aggarwal, K.
    Arzoumanian, Z.
    Baker, P. T.
    Brazier, A.
    Brinson, M. R.
    Brook, P. R.
    Burke-Spolaor, S.
    Chatterjee, S.
    Cordes, M.
    Cornish, N. J.
    Crawford, F.
    Crowter, K.
    Cromartie, H. T.
    DeCesar, M.
    Demorest, P. B.
    Dolch, T.
    Ellis, J. A.
    Ferdman, R. D.
    Ferrara, E.
    Fonseca, E.
    Garver-Daniels, N.
    Gentile, P.
    Hazboun, J. S.
    Holgado, A. M.
    Huerta, E. A.
    Islo, K.
    Jennings, R.
    Jones, G.
    Jones, M. L.
    Kaiser, A. R.
    Kaplan, D. L.
    Kelley, L. Z.
    Keys, J. S.
    Lam, M. T.
    Lazio, T. J. W.
    Levin, L.
    Lorimer, D. R.
    Luo, J.
    Lynch, R. S.
    Madison, D. R.
    McLaughlin, M. A.
    McWilliams, S. T.
    Mingarelli, C. M. F.
    Ng, C.
    Nice, D. J.
    Pennucci, T. T.
    Pol, N. S.
    Ransom, S. M.
    Ray, P. S.
    Siemens, X.
    ASTROPHYSICAL JOURNAL, 2019, 880 (02):
  • [45] Angular resolution of the search for anisotropic stochastic gravitational-wave background with terrestrial gravitational-wave detectors
    Floden, Erik
    Mandic, Vuk
    Matas, Andrew
    Tsukada, Leo
    PHYSICAL REVIEW D, 2022, 106 (02)
  • [46] Analysis of gravitational-wave data
    Faculty of Physics, University of Bialystok, Poland
    不详
    Analysis of Gravitational-Wave Data, 1600, (1-257):
  • [47] Astrophysical sources of a stochastic gravitational-wave background
    Regimbau, T.
    Mandic, V.
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (18)
  • [48] Optimal Search for an Astrophysical Gravitational-Wave Background
    Smith, Rory
    Thrane, Eric
    PHYSICAL REVIEW X, 2018, 8 (02):
  • [49] Cosmic gravitational-wave background in a cyclic universe
    Boyle, LA
    Steinhardt, PJ
    Turok, N
    PHYSICAL REVIEW D, 2004, 69 (12):
  • [50] Impact of cosmic neutrinos on the gravitational-wave background
    Mangilli, Anna
    Bartolo, Nicola
    Matarrese, Sabino
    Riotto, Antonio
    PHYSICAL REVIEW D, 2008, 78 (08):