Quantitative analysis of rabies virus-based synaptic connectivity tracing

被引:2
|
作者
Tran-Van-Minh, Alexandra [1 ]
Ye, Zhiwen [1 ]
Rancz, Ede [1 ,2 ]
机构
[1] Francis Crick Inst, London, England
[2] Aix Marseille Univ, INMED, INSERM, Marseille, France
来源
PLOS ONE | 2023年 / 18卷 / 03期
基金
欧盟地平线“2020”; 英国惠康基金; 英国医学研究理事会;
关键词
MOUSE-BRAIN; AFFERENT INPUTS; IN-VIVO; SINGLE; ORGANIZATION; EXPRESSION; NEURONS;
D O I
10.1371/journal.pone.0278053
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Monosynaptically restricted rabies viruses have been used for more than a decade for synaptic connectivity tracing. However, the verisimilitude of quantitative conclusions drawn from these experiments is largely unknown. The primary reason is the simple metrics commonly used, which generally disregard the effect of starter cell numbers. Here we present an experimental dataset with a broad range of starter cell numbers and explore their relationship with the number of input cells across the brain using descriptive statistics and modelling. We show that starter cell numbers strongly affect input fraction and convergence index measures, making quantitative comparisons unreliable. Furthermore, we suggest a principled way to analyse rabies derived connectivity data by taking advantage of the starter vs input cell relationship that we describe and validate across independent datasets.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Organization of Multisynaptic Inputs to the Dorsal and Ventral Dentate Gyrus: Retrograde Trans-Synaptic Tracing with Rabies Virus Vector in the Rat
    Ohara, Shinya
    Sato, Sho
    Tsutsui, Ken-Ichiro
    Witter, Menno P.
    Iijima, Toshio
    PLOS ONE, 2013, 8 (11):
  • [32] Retrograde neuronal tracing with a deletion-mutant rabies virus
    Wickersham, Ian R.
    Finke, Stefan
    Conzelmann, Karl-Klaus
    Callaway, Edward M.
    NATURE METHODS, 2007, 4 (01) : 47 - 49
  • [33] Retrograde neuronal tracing with a deletion-mutant rabies virus
    Wickersham I.R.
    Finke S.
    Conzelmann K.-K.
    Callaway E.M.
    Nature Methods, 2007, 4 (1) : 47 - 49
  • [34] Virus-Based Devices: Prospects for Allopoiesis
    Dragnea, Bogdan
    ACS NANO, 2017, 11 (04) : 3433 - 3437
  • [35] Optimizing virus-based expression systems
    Artinger, Michael
    Kemp, Christopher W.
    Pushko, Peter
    Olszowy, Michael W.
    Genetic Engineering and Biotechnology News, 2015, 35 (01): : 28 - 29
  • [36] Virus-based gene delivery systems
    Mah, C
    Byrne, BJ
    Flotte, TR
    CLINICAL PHARMACOKINETICS, 2002, 41 (12) : 901 - 911
  • [37] Phylogenetic analysis and victim contact tracing of rabies virus from humans and dogs in Bali, Indonesia
    Mahardika, G. N. K.
    Dibia, N.
    Budayanti, N. S.
    Susilawathi, N. M.
    Subrata, K.
    Darwinata, A. E.
    Wignall, F. S.
    Richt, J. A.
    Valdivia-Granda, W. A.
    Sudewi, A. A. R.
    EPIDEMIOLOGY AND INFECTION, 2014, 142 (06): : 1146 - 1154
  • [38] Biomimetic virus-based colourimetric sensors
    Oh, Jin-Woo
    Chung, Woo-Jae
    Heo, Kwang
    Jin, Hyo-Eon
    Lee, Byung Yang
    Wang, Eddie
    Zueger, Chris
    Wong, Winnie
    Meyer, Joel
    Kim, Chuntae
    Lee, So-Young
    Kim, Won-Geun
    Zemla, Marcin
    Auer, Manfred
    Hexemer, Alexander
    Lee, Seung-Wuk
    NATURE COMMUNICATIONS, 2014, 5
  • [39] Virus-Based MicroRNA Silencing in Plants
    Sha, Aihua
    Zhao, Jinping
    Yin, Kangquan
    Tang, Yang
    Wang, Yan
    Wei, Xiang
    Hong, Yiguo
    Liu, Yule
    PLANT PHYSIOLOGY, 2014, 164 (01) : 36 - 47
  • [40] Virus-Based Chemical and Biological Sensing
    Mao, Chuanbin
    Liu, Aihua
    Cao, Binrui
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (37) : 6790 - 6810