Spatio-Temporal Heterogeneous Graph Neural Networks for Estimating Time of Travel

被引:1
|
作者
Wu, Lei [1 ,2 ]
Tang, Yong [1 ]
Zhang, Pei [2 ]
Zhou, Ying [2 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 054000, Peoples R China
[2] Shijiazhuang Tiedao Univ, Sch Econ & Law, Shijiazhuang 050043, Peoples R China
基金
中国国家自然科学基金;
关键词
Estimating Time of Travel (ETT); heterogeneous graph neural network; spatio-temporal correlation;
D O I
10.3390/electronics12061293
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Estimating Time of Travel (ETT) is a crucial element of intelligent transportation systems. In most previous studies, time of travel is estimated by identifying the spatio-temporal features of road segments or intersections independently. However, due to continuous changes in road segments and intersections in a path, dynamic features should be coupled and interactive. Therefore, employing only road segment or intersection features is inadequate for improving the accuracy of ETT. To address this issue, we proposed a novel deep learning framework for ETT based on a spatio-temporal heterogeneous graph neural network (STHGNN). Specifically, a heterogeneous traffic graph was first created based on intersections and road segments, which implies an adjacency correlation. Next, a learning approach for spatio-temporal heterogeneous convolutional attention networks was proposed to obtain the spatio-temporal correlations of joint intersections and road segments. This approach integrates temporal and spatial features. Finally, a fusion prediction approach was employed to estimate the travel time of a given path. Experiments were conducted on real-world path datasets to evaluate our proposed model. The results showed that STHGNN significantly outperformed the baselines.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] SPATIO-TEMPORAL GRAPH COMPLEMENTARY SCATTERING NETWORKS
    Cheng, Zida
    Chen, Siheng
    Zhang, Ya
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5573 - 5577
  • [22] Graph-Based Spatio-Temporal Backpropagation for Training Spiking Neural Networks
    Yan, Yulong
    Chu, Haoming
    Chen, Xin
    Jin, Yi
    Huan, Yuxiang
    Zheng, Lirong
    Zou, Zhuo
    2021 IEEE 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS), 2021,
  • [23] Spatio-Temporal Graph Neural Networks for Predictive Learning in Urban Computing: A Survey
    Jin, Guangyin
    Liang, Yuxuan
    Fang, Yuchen
    Shao, Zezhi
    Huang, Jincai
    Zhang, Junbo
    Zheng, Yu
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) : 5388 - 5408
  • [24] Hierarchical spatio-temporal graph convolutional neural networks for traffic data imputation
    Xu, Dongwei
    Peng, Hang
    Tang, Yufu
    Guo, Haifeng
    INFORMATION FUSION, 2024, 106
  • [25] Spatio-Temporal Short Term Load Forecasting Using Graph Neural Networks
    Mansoor, Haris
    Shabbir, Madiha
    Ali, Muhammad Yasir
    Rauf, Huzaifa
    Khalid, Muhammad
    Arshad, Naveed
    2023 12TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS, ICRERA, 2023, : 320 - 323
  • [26] SCGTracker: Spatio-temporal correlation and graph neural networks for multiple object tracking
    Zhang, Yajuan
    Liang, Yongquan
    Leng, Jiaxu
    Wang, Zhihui
    PATTERN RECOGNITION, 2024, 149
  • [27] Spatio-temporal graph neural networks for missing data completion in traffic prediction
    Chen, Jiahui
    Yang, Lina
    Yang, Yi
    Peng, Ling
    Ge, Xingtong
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2024,
  • [28] Towards spatio-temporal prediction of cavitating fluid flow with graph neural networks
    Gao, Rui
    Heydari, Shayan
    Jaiman, Rajeev K.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 177
  • [29] Power allocation using spatio-temporal graph neural networks and reinforcement learning
    Jamshidiha, Saeed
    Pourahmadi, Vahid
    Mohammadi, Abbas
    Bennis, Mehdi
    WIRELESS NETWORKS, 2024, : 1163 - 1176
  • [30] Monitoring industrial control systems via spatio-temporal graph neural networks
    Wang, Yue
    Peng, Hao
    Wang, Gang
    Tang, Xianghong
    Wang, Xuejian
    Liu, Chunyang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 122