Constructing Al@C-Sn pellet anode without passivation layer for lithium-ion battery

被引:2
|
作者
Cao, Kangzhe [1 ,2 ,3 ]
Wang, Sitian [1 ]
He, Yanan [1 ]
Ma, Jiahui [1 ]
Yue, Ziwei [1 ]
Liu, Huiqiao [1 ,2 ]
机构
[1] Xinyang Normal Univ, Coll Chem & Chem Engn, Xinyang 464000, Peoples R China
[2] Xinyang Key Lab Low Carbon Energy Mat, Xinyang 464000, Peoples R China
[3] Henan Prov Key Lab Utilizat Nonmet Mineral South H, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion battery; high-performance anode; aluminum; passivation layer; plus-minus strategy; FULL-CELL; CARBON; PERFORMANCE; ALUMINUM; ELECTRODES;
D O I
10.1007/s12613-023-2720-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Al is considered as a promising lithium-ion battery (LIBs) anode materials owing to its high theoretical capacity and appropriate lithation/de-lithation potential. Unfortunately, its inevitable volume expansion causes the electrode structure instability, leading to poor cyclic stability. What's worse, the natural Al2O3 layer on commercial Al pellets is always existed as a robust insulating barrier for electrons, which brings the voltage dip and results in low reversible capacity. Herein, this work synthesized core-shell Al@C-Sn pellets for LIBs by a plus-minus strategy. In this proposal, the natural Al2O3 passivation layer is eliminated when annealing the pre-introduced SnCl2, meanwhile, polydopamine-derived carbon is introduced as dual functional shell to liberate the fresh Al core from re-oxidization and alleviate the volume swellings. Benefiting from the addition of C-Sn shell and the elimination of the Al2O3 passivation layer, the as-prepared Al@C-Sn pellet electrode exhibits little voltage dip and delivers a reversible capacity of 1018.7 mAh center dot g-1 at 0.1 A center dot g-1 and 295.0 mAh center dot g-1 at 2.0 A center dot g-1 (after 1000 cycles), respectively. Moreover, its diffusion-controlled capacity is muchly improved compared to those of its counterparts, confirming the well-designed nanostructure contributes to the rapid Li-ion diffusion and further enhances the lithium storage activity.
引用
收藏
页码:552 / 561
页数:10
相关论文
共 50 条
  • [21] Nanoscale advanced carbons as an anode for lithium-ion battery
    Naraprawatphong, Rinyarat
    Chokradjaroen, Chayanaphat
    Thiangtham, Satita
    Yang, Li
    Saito, Nagahiro
    MATERIALS TODAY ADVANCES, 2022, 16
  • [22] Optimization of silicene oxidation as lithium-ion battery anode
    Nematzadeh, Mansoureh
    Massoudi, Abouzar
    Nangir, Mahya
    MATERIALS TODAY-PROCEEDINGS, 2021, 42 : 1588 - 1591
  • [23] Bismuth oxide: a new lithium-ion battery anode
    Li, Yuling
    Trujillo, Matthias A.
    Fu, Engang
    Patterson, Brian
    Fei, Ling
    Xu, Yun
    Deng, Shuguang
    Smirnov, Sergei
    Luo, Hongmei
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (39) : 12123 - 12127
  • [24] Amorphous silicon film anode for lithium-ion battery
    Fu Ping-Ping
    Song Ying-Jie
    Zhang Hong-Fang
    Yang Hua-Bin
    Zhou Zuo-Xiang
    Wu Meng-Tao
    Huang Lai-He
    Xu Gang
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2006, 22 (10) : 1823 - 1827
  • [25] Porous structured silicon for lithium-ion battery anode
    Zhou, Chongwu
    Ge, Mingyuan
    Rong, Jiepeng
    Fang, Xin
    Zhang, Anyi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [26] Influence of solvent on the structure and electrochemical performances of Sn-based anode for lithium-ion battery
    Yin, Lixiong
    Chai, Simin
    Huang, Jianfeng
    Kong, Xingang
    Wang, Jia
    Bai, Peijie
    CERAMICS INTERNATIONAL, 2017, 43 (15) : 12667 - 12674
  • [27] A prelithiated carbon anode for lithium-ion battery applications
    Jarvis, C. R.
    Lain, M. J.
    Yakovleva, M. V.
    Gao, Yuan
    JOURNAL OF POWER SOURCES, 2006, 162 (02) : 800 - 802
  • [28] Enhanced Electrochemical Stability of Sn-Carbon Nanotube Nanocapsules as Lithium-Ion Battery Anode
    Liu, Chun-jing
    Huang, Hao
    Cao, Guo-zhong
    Xue, Fang-hong
    Camacho, Ramon Alberto Paredes
    Dong, Xing-long
    ELECTROCHIMICA ACTA, 2014, 144 : 376 - 382
  • [29] Fabrication and characterization of germanane as a lithium-ion battery anode
    Serino, Andrew
    Ko, Jesse
    Yeung, Michael
    Schwartz, Jeffrey
    Kaner, Richard
    Dunn, Bruce
    Weiss, Paul
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [30] Study on the superior lithium storage performance of carbon/Sn–Mo oxide composite as lithium-ion battery anode
    Yanli Chen
    Hu Peng
    Heng Jiang
    Jie Zhang
    Xin Chen
    Ying Zhang
    Dongtao Ge
    Hang Guo
    Journal of Materials Science, 2020, 55 : 14373 - 14388