Recent Advancements of Bioinks for 3D Bioprinting of Human Tissues and Organs

被引:4
|
作者
He, Wen [1 ]
Deng, Jinjun [1 ]
Ma, Binghe [1 ]
Tao, Kai [1 ]
Zhang, Zhi [2 ,3 ,4 ]
Ramakrishna, Seeram [5 ]
Yuan, Weizheng [1 ]
Ye, Tao [1 ]
机构
[1] Northwestern Polytech Univ, Key Lab Micro Nano Syst Aerosp, Minist Educ, Xian 710072, Peoples R China
[2] Sichuan Univ, West China Hosp Stomatol, Dept Oral Maxillofacial Surg, State Key Lab Oral Dis, Chengdu 610041, Sichuan, Peoples R China
[3] Sichuan Univ, West China Hosp Stomatol, Natl Ctr Stomatol, Dept Oral Maxillofacial Surg, Chengdu 610041, Sichuan, Peoples R China
[4] Sichuan Univ, West China Hosp Stomatol, Natl Clin Res Ctr Oral Dis, Dept Oral Maxillofacial Surg, Chengdu 610041, Sichuan, Peoples R China
[5] Natl Univ Singapore, Ctr Nanofibers & Nanotechnol, Singapore 117576, Singapore
基金
中国国家自然科学基金;
关键词
bioink; 3D bioprinting; tissue engineering; regeneration; organs; MESENCHYMAL STEM-CELLS; SPINAL-CORD-INJURY; EXTRACELLULAR-MATRIX; MECHANICAL-PROPERTIES; POTENTIAL BIOINK; HYDROGEL BIOINK; VALVE CONDUITS; SKIN MODEL; BONE; CONSTRUCTS;
D O I
10.1021/acsabm.3c00806
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
3D bioprinting is recognized as a promising biomanufacturing technology that enables the reproducible and high-throughput production of tissues and organs through the deposition of different bioinks. Especially, bioinks based on loaded cells allow for immediate cellularity upon printing, providing opportunities for enhanced cell differentiation for organ manufacturing and regeneration. Thus, extensive applications have been found in the field of tissue engineering. The performance of the bioinks determines the functionality of the entire printed construct throughout the bioprinting process. It is generally expected that bioinks should support the encapsulated cells to achieve their respective cellular functions and withstand normal physiological pressure exerted on the printed constructs. The bioinks should also exhibit a suitable printability for precise deposition of the constructs. These characteristics are essential for the functional development of tissues and organs in bioprinting and are often achieved through the combination of different biomaterials. In this review, we have discussed the cutting-edge outstanding performance of different bioinks for printing various human tissues and organs in recent years. We have also examined the current status of 3D bioprinting and discussed its future prospects in relieving or curing human health problems.
引用
收藏
页码:17 / 43
页数:27
相关论文
共 50 条
  • [21] An Overview of Hydrogel-Based Bioinks for 3D Bioprinting of Soft Tissues
    Soumitra Das
    Bikramjit Basu
    Journal of the Indian Institute of Science, 2019, 99 : 405 - 428
  • [22] An Overview of Hydrogel-Based Bioinks for 3D Bioprinting of Soft Tissues
    Das, Soumitra
    Basu, Bikramjit
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2019, 99 (03) : 405 - 428
  • [23] 3D Bioprinting of Human Hollow Organs
    Nabanita Panja
    Sumana Maji
    Sabyasachi Choudhuri
    Kazi Asraf Ali
    Chowdhury Mobaswar Hossain
    AAPS PharmSciTech, 23
  • [24] Functionalizing bioinks for 3D bioprinting applications
    Parak, Azraa
    Pradeep, Priyamvada
    du Toit, Lisa C.
    Kumar, Pradeep
    Choonara, Yahya E.
    Pillay, Viness
    DRUG DISCOVERY TODAY, 2019, 24 (01) : 198 - 205
  • [25] 3D Bioprinting of Human Hollow Organs
    Panja, Nabanita
    Maji, Sumana
    Choudhuri, Sabyasachi
    Ali, Kazi Asraf
    Hossain, Chowdhury Mobaswar
    AAPS PHARMSCITECH, 2022, 23 (05)
  • [26] Natural and Synthetic Bioinks for 3D Bioprinting
    Khoeini, Roghayeh
    Nosrati, Hamed
    Akbarzadeh, Abolfazl
    Eftekhari, Aziz
    Kavetskyy, Taras
    Khalilov, Rovshan
    Ahmadian, Elham
    Nasibova, Aygun
    Datta, Pallab
    Roshangar, Leila
    Deluca, Dante C.
    Davaran, Soodabeh
    Cucchiarini, Magali
    Ozbolat, Ibrahim T.
    ADVANCED NANOBIOMED RESEARCH, 2021, 1 (08):
  • [27] 3D Bioprinting: A Novel Avenue for Manufacturing Tissues and Organs
    Zhang, Bin
    Gao, Lei
    Ma, Liang
    Luo, Yichen
    Yang, Huayong
    Cui, Zhanfeng
    ENGINEERING, 2019, 5 (04) : 777 - 794
  • [28] Nanocellulosic materials as bioinks for 3D bioprinting
    Piras, Carmen C.
    Fernandez-Prieto, Susana
    De Borggraeve, Wim M.
    BIOMATERIALS SCIENCE, 2017, 5 (10) : 1988 - 1992
  • [29] Recent advances in 3D bioprinting of vascularized tissues
    Zhang, Yi
    Kumar, Piyush
    Lv, Songwei
    Xiong, Di
    Zhao, Hongbin
    Cai, Zhiqiang
    Zhao, Xiubo
    MATERIALS & DESIGN, 2021, 199
  • [30] Recent advances in 3D bioprinting of musculoskeletal tissues
    Potyondy, Tyler
    Uquillas, Jorge Alfredo
    Tebon, Peyton J.
    Byambaa, Batzaya
    Hasan, Anwarul
    Tavafoghi, Maryam
    Mary, Heloise
    Aninwene, George E., II
    Pountos, Ippokratis
    Khademhosseini, Ali
    Ashammakhi, Nureddin
    BIOFABRICATION, 2021, 13 (02)