Traditional machine learning and deep learning for predicting melt-pool cross-sectional morphology of laser powder bed fusion additive manufacturing with thermographic monitoring

被引:4
|
作者
Wang, Haijie [1 ]
Li, Bo [1 ,2 ,3 ]
Zhang, Saifan [1 ]
Xuan, Fuzhen [1 ,2 ]
机构
[1] East China Univ Sci & Technol, Sch Mech & Power Engn, Shanghai 200237, Peoples R China
[2] Shanghai Collaborat Innovat Ctr High End Equipment, Shanghai 200237, Peoples R China
[3] East China Univ Sci & Technol, Addit Mfg & Intelligent Equipment Res Inst, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Laser powder bed fusion; Machine learning; Deep learning; Near-infrared imaging; Melt pool; Additive manufacturing;
D O I
10.1007/s10845-024-02356-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The intricate non-equilibrium and rapid solidification behavior inherent in laser powder bed fusion (LPBF) additive manufacturing affects the quality and performance of as-built parts. To evaluate and predict the quality of LPBF-built parts, engaging in real-time monitoring of the LPBF process by leveraging thermal information derived from the melt pool becomes significant. In this work, the insights conveyed by near-infrared (NIR) thermal-imaging on melt pools during the LPBF process were explored, with the assistance of machine learning (ML) and deep learning (DL) methods, aiming to develop ML and DL models capable of recognizing NIR melt-pool monitoring images and predicting invisible geometries of laser-tracks. Traditional ML models, including support vector machines, were used to establish a non-linear mapping relationship between NIR thermal images and cross-sectional geometries of solidified laser-tracks. That was achieved by extracting melt-pool NIR image features based on prior knowledge while analyzing the influence of laser parameters on the melt pools. Then, DL models such as convolutional neural networks were improved to extract multi-scale features from the melt-pool thermal images through self-learning mechanisms. By comprehensively merging multi-scale features, these DL models effectively captured and reflected vital NIR image information from the melt pool. The various methodologies collectively provided real-time insights for monitoring and controlling the LPBF processes, thereby facilitating reasoning about and predicting imperceptible geometries of the cross-sectional solidified laser-tracks within the as-built parts.
引用
收藏
页码:2079 / 2104
页数:26
相关论文
共 50 条
  • [1] COMPARISON OF MACHINE LEARNING MODELS AND ANALYTICAL SCALING LAW FOR PREDICTING MELT-POOL DEPTH IN LASER POWDER BED FUSION (LPBF) ADDITIVE MANUFACTURING
    Bai, Feiyang
    Arikatla, Siva Surya Prakash Reddy
    Zhang, Nian
    Gebre, Fisseha L.
    Xu, Jiajun
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 3, 2023,
  • [2] Machine learning based prediction of melt pool morphology in a laser-based powder bed fusion additive manufacturing process
    Zhang, Zhibo
    Sahu, Chandan Kumar
    Singh, Shubhendu Kumar
    Rai, Rahul
    Yang, Zhuo
    Lu, Yan
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2023,
  • [3] Hybrid Modeling Approach for Melt-Pool Prediction in Laser Powder Bed Fusion Additive Manufacturing
    Moges, Tesfaye
    Yang, Zhuo
    Jones, Kevontrez
    Feng, Shaw
    Witherell, Paul
    Lu, Yan
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2021, 21 (05)
  • [4] Deep learning-based data registration of melt-pool-monitoring images for laser powder bed fusion additive manufacturing
    Kim, Jaehyuk
    Yang, Zhuo
    Ko, Hyunwoong
    Cho, Hyunbo
    Lu, Yan
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 68 : 117 - 129
  • [5] Using Machine Learning to predict the melt-pool depth using structural melt pool length data in Laser Powder Bed Fusion
    Arikatla, Siva Surya Prakash Reddy
    Bai, Feiyang
    Zhang, Nian
    Gebre, Fisseha L.
    Xu, Jiajun
    8TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, 2023, : 973 - 980
  • [6] Effect of interlayer temperature on melt-pool morphology in laser powder bed fusion
    Wang, Qian
    Michaleris, Panagiotis
    Ren, Yong
    Dickman, Corey
    Reutzel, Edward
    ADDITIVE MANUFACTURING LETTERS, 2023, 7
  • [7] Engineering-Guided Deep Learning of Melt-Pool Dynamics for Additive Manufacturing Quality Monitoring
    Zhang, Siqi
    Yang, Hui
    Yang, Zhuo
    Lu, Yan
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2024, 24 (10)
  • [8] A Physics-Informed Two-Level Machine-Learning Model for Predicting Melt-Pool Size in Laser Powder Bed Fusion
    Ren, Yong
    Wang, Qian
    Michaleris, Panagiotis
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2021, 143 (12):
  • [9] Geometry-agnostic Melt-pool Homogenization of Laser Powder Bed Fusion through Reinforcement Learning
    Park, Bumsoo
    Mishra, Sandipan
    2023 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, AIM, 2023, : 1014 - 1019
  • [10] A Machine Learning Framework for Melt-Pool Geometry Prediction and Process Parameter Optimization in the Laser Powder-Bed Fusion Process
    Rahman, M. Shafiqur
    Sattar, Naw Safrin
    Ahmed, Radif Uddin
    Ciaccio, Jonathan
    Chakravarty, Uttam K.
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (04):