Axion-like particles at future e- p collider

被引:0
|
作者
Mosala, Karabo [1 ,2 ]
Sharma, Pramod [1 ,2 ,3 ]
Kumar, Mukesh [1 ,2 ]
Goyal, Ashok [4 ]
机构
[1] Univ Witwatersrand Wits, Sch Phys, ZA-2050 Johannesburg, South Africa
[2] Univ Witwatersrand Wits, Inst Collider Particle Phys, ZA-2050 Johannesburg, South Africa
[3] Indian Inst Sci Educ & Res, Knowledge City 140306, Punjab, India
[4] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 01期
关键词
CP CONSERVATION; COUPLINGS;
D O I
10.1140/epjc/s10052-024-12401-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this work, we explore the possibilities of producing Axion-Like Particles (ALPs) in a future e(-)p collider. Specifically, we focus on the proposed Large Hadron electron collider (LHeC), which can achieve a center-of-mass energy of root s approximate to 1.3 TeV, enabling us to probe relatively high ALP masses with m(a) less than or similar to 300 GeV. The production of ALPs can occur through various channels, including W+W-, gamma gamma, ZZ, and Z gamma-fusion within the collider environment. To investigate this, we conduct a comprehensive analysis that involves estimating the production cross section and constraining the limits on the associated couplings of ALPs, namely g(WW), g(gamma gamma), g(ZZ), and g(Z gamma). To achieve this, we utilize a multiple-bin chi(2) analysis on sensitive differential distributions. Through the analysis of these distributions, we determine upper bounds on the associated couplings within the mass range of 5 GeV <= m(a) <= 300 GeV. The obtained upper bounds are of the order of O(10(-1)) for g(gamma gamma) (g(WW), g(ZZ), g(Z gamma)) in m(a) is an element of[5, 200 (300)] GeV considering an integrated luminosity of 1 ab(-1). Furthermore, we compare the results of our study with those obtained from other available experiments. We emphasize the limits obtained through our analysis and showcase the potential of the LHeC in probing the properties of ALPs.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Prospects for searching for axion-like particles at the CEPC
    Wang, Han
    Yue, Chong-Xing
    Guo, Yu-Chen
    Cheng, Xue-Jia
    Li, Xin-Yang
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2022, 49 (11)
  • [32] Detecting axion-like particles at radio frequencies
    Taoso, Marco
    [J]. 16TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2019), 2020, 1468
  • [33] Axion-Like Particles and the Higgs Decays h→PZ and h→Pe~+e~-
    安中元
    岳崇兴
    刘志成
    [J]. Chinese Physics Letters, 2018, 35 (06) : 16 - 19
  • [34] Testable axion-like particles in the minimal linear σ model
    Alonso-Gonzalez, J.
    Merlo, L.
    Pobbe, F.
    Rigolin, S.
    Sumensari, O.
    [J]. NUCLEAR PHYSICS B, 2020, 950
  • [35] THE GammeV SUITE OF EXPERIMENTAL SEARCHES FOR AXION-LIKE PARTICLES
    Steffen, Jason H.
    Upadhye, Amol
    [J]. MODERN PHYSICS LETTERS A, 2009, 24 (26) : 2053 - 2068
  • [36] Invisible decays of axion-like particles: constraints and prospects
    Luc Darmé
    Federica Giacchino
    Enrico Nardi
    Mauro Raggi
    [J]. Journal of High Energy Physics, 2021
  • [37] New bounds on axion-like particles from MicroBooNE
    Pilar Coloma
    Pilar Hernández
    Salvador Urrea
    [J]. Journal of High Energy Physics, 2022
  • [38] No chiral light bending by clumps of axion-like particles
    Blas, Diego
    Caputo, Andrea
    Ivanov, Mikhail M.
    Sberna, Laura
    [J]. PHYSICS OF THE DARK UNIVERSE, 2020, 27
  • [39] Gamma ray astrophysics and signatures of axion-like particles
    Serpico, Pasquale D.
    [J]. ADVANCES IN SPACE RESEARCH, 2009, 43 (03) : 335 - 341
  • [40] Probing axion-like particles coupling to gluons at the LHC
    Filmon Andom Ghebretinsae
    Zeren Simon Wang
    Kechen Wang
    [J]. Journal of High Energy Physics, 2022