Good formal matrix rings over residue class rings

被引:1
|
作者
Norbosambuev, Tsyrendorzhi D. [1 ]
机构
[1] Tomsk State Univ, Tomsk, Russia
关键词
ring; good ring; Morita context ring; endomorphism ring of abelian group;
D O I
10.17223/19988621/85/3
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
For an arbitrary prime p ring E((Z/p(2)Z) circle plus (Z/pZ)) is a semilocal ring with p(5) elements that cannot be embedded in any matrix ring over commutative ring. In a more general case - a ring E((Z/p(m)Z) circle plus (Z/p(n)Z)), m. n, is isomorphic to a formal matrix ring ( [GRAPHICS] ) There are cryptographic systems based on the arithmetic of E((Z/p(2)Z) circle plus (Z/pZ)). We show that ring E((Z/p(m)Z) circle plus (Z/p(n)Z)) is 2-good and 2-nil-good for p > 2 and not good for p = 2 and m > n. Theorem 3.3. Let p be a prime and p > 2, m >= n, then E((Z/p(m)Z) circle plus (Z/p(n)Z)) is a 2-good ring. What if p = 2? In case of m = n, we have E((Z/(2)nZ) circle plus (Z/(2)nZ)) = M(2, Z/2(n)Z) which is 2-good. Theorem 3.5. Let m > n, then for a matrix A = [GRAPHICS] is an element of E((Zz/2(m)Z) circle plus (Z / 2(m) Z)), a, b, c, d. Z, the following statements are true: 1) Matrix A is 2-good if a and d are even; 2) Matrix A is 3-good if a and d are odd; 3) Matrix A is not good if a and d are numbers of different parity. Thus, formal matrix ring E((Z/2(m)Z) circle plus (Z/2(n)Z)), m > n, is not good.
引用
收藏
页码:32 / 42
页数:11
相关论文
共 50 条
  • [31] REPRESENTATIONS OF PARTIAL ORDERED SETS OVER RESIDUE CLASS RINGS
    PLAKHOTN.VV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1974, (05): : 404 - 406
  • [32] DECOMPOSITION OF LINEAR SEQUENTIAL CIRCUITS OVER RESIDUE CLASS RINGS
    MATLUK, MM
    GILL, A
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1972, 294 (03): : 167 - &
  • [33] Permutation polynomials and their differential properties over residue class rings
    Yu, Yuyin
    Wang, Mingsheng
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) : 3104 - 3108
  • [34] ENUMERATING LOCAL PERMUTATION POLYNOMIALS OVER RESIDUE CLASS RINGS
    Pan, Jiangmin
    Li, Caiheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (05): : 1371 - 1377
  • [35] Implicit linear difference equation over residue class rings
    Heneralov, Mykola, V
    Piven, Aleksey L.
    ALGEBRA AND DISCRETE MATHEMATICS, 2024, 37 (01): : 85 - 105
  • [36] The structures of dual modules over formal triangular matrix rings
    Mao, Lixin
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (3-4): : 367 - 380
  • [37] Ding modules and dimensions over formal triangular matrix rings
    Mao, Lixin
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2022, 148 : 1 - 22
  • [38] Simple-Direct Modules Over Formal Matrix Rings
    Abyzov, A. N.
    Tapkin, D. T.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (01) : 1 - 14
  • [39] Retractable and Coretractable Modules over Formal Triangular Matrix Rings
    Derya Keskin Tütüncü
    Rachid Tribak
    Bulletin of the Iranian Mathematical Society, 2019, 45 : 429 - 445
  • [40] ADMISSIBLE BALANCED PAIRS OVER FORMAL TRIANGULAR MATRIX RINGS
    Mao, Lixin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (06) : 1387 - 1400