Good formal matrix rings over residue class rings

被引:1
|
作者
Norbosambuev, Tsyrendorzhi D. [1 ]
机构
[1] Tomsk State Univ, Tomsk, Russia
关键词
ring; good ring; Morita context ring; endomorphism ring of abelian group;
D O I
10.17223/19988621/85/3
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
For an arbitrary prime p ring E((Z/p(2)Z) circle plus (Z/pZ)) is a semilocal ring with p(5) elements that cannot be embedded in any matrix ring over commutative ring. In a more general case - a ring E((Z/p(m)Z) circle plus (Z/p(n)Z)), m. n, is isomorphic to a formal matrix ring ( [GRAPHICS] ) There are cryptographic systems based on the arithmetic of E((Z/p(2)Z) circle plus (Z/pZ)). We show that ring E((Z/p(m)Z) circle plus (Z/p(n)Z)) is 2-good and 2-nil-good for p > 2 and not good for p = 2 and m > n. Theorem 3.3. Let p be a prime and p > 2, m >= n, then E((Z/p(m)Z) circle plus (Z/p(n)Z)) is a 2-good ring. What if p = 2? In case of m = n, we have E((Z/(2)nZ) circle plus (Z/(2)nZ)) = M(2, Z/2(n)Z) which is 2-good. Theorem 3.5. Let m > n, then for a matrix A = [GRAPHICS] is an element of E((Zz/2(m)Z) circle plus (Z / 2(m) Z)), a, b, c, d. Z, the following statements are true: 1) Matrix A is 2-good if a and d are even; 2) Matrix A is 3-good if a and d are odd; 3) Matrix A is not good if a and d are numbers of different parity. Thus, formal matrix ring E((Z/2(m)Z) circle plus (Z/2(n)Z)), m > n, is not good.
引用
收藏
页码:32 / 42
页数:11
相关论文
共 50 条
  • [1] ON A CLASS OF 3-GOOD FORMAL MATRIX RINGS
    Norbosambuev, Tsyrendorzhi D.
    Timoshenko, Egor A.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2020, (67): : 55 - 62
  • [2] A class of formal matrix rings
    Tang, Gaohua
    Zhou, Yiqiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (12) : 4672 - 4688
  • [3] Nilpotent, nil-good, and nil-clean formal matrices over residue class rings
    Elfimova, Anastasia M.
    Norbosambuev, Tsyrendorzhi D.
    Podkorytov, Maxim, V
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2024, (91):
  • [4] Modules over formal matrix rings
    Krylov P.A.
    Tuganbaev A.A.
    Journal of Mathematical Sciences, 2010, 171 (2) : 248 - 295
  • [5] A class of special formal triangular matrix rings
    Mao, Lixin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
  • [6] PERMUTATION POLYNOMIALS OVER RESIDUE CLASS RINGS
    Karpov, A., V
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2013, 22 (04): : 16 - +
  • [7] Injective modules over formal matrix rings
    Krylov, P. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (01) : 72 - 77
  • [8] Injective modules over formal matrix rings
    P. A. Krylov
    Siberian Mathematical Journal, 2010, 51 : 72 - 77
  • [9] POLYNOMIAL FUNCTIONS ON RINGS OF DUAL NUMBERS OVER RESIDUE CLASS RINGS OF THE INTEGERS
    Al-Ezeh, Hasan
    Al Maktry, Amr Ali
    Frisch, Sophie
    MATHEMATICA SLOVACA, 2021, 71 (05) : 1063 - 1088
  • [10] Idempotent and nil-clean formal matrices of order 2 over residue class rings
    Koroleva, Anastasia M.
    Norbosambuev, Tsyrendorzhi D.
    Podkorytov, Maxim, V
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2025, (93):