Physics-Informed Sparse Neural Network for Permanent Magnet Eddy Current Device Modeling and Analysis

被引:1
|
作者
Wang, Dazhi [1 ]
Wang, Sihan [1 ]
Kong, Deshan [1 ]
Wang, Jiaxing [1 ]
Li, Wenhui [1 ]
Pecht, Michael [2 ]
机构
[1] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110819, Peoples R China
[2] Univ Maryland, Ctr Adv Life Cycle Engn, College Pk, MD 20742 USA
基金
中国国家自然科学基金;
关键词
Eddy currents; Permanent magnets; Mathematical models; Neural networks; Torque; Magnetic domains; Electromagnetics; deep learning; partial differential equations; permanent magnet eddy current device; physics-informed neural network;
D O I
10.1109/LMAG.2023.3288388
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The objective is to study the prediction of the electromagnetic (EM) field and the output performance of permanent magnet eddy current devices (PMECDs) based on a physics-informed sparse neural network (PISNN). In order to achieve this goal, a unified physical model is first defined according to different types of PMECDs, which is equivalent to solving a parameterized magnetic quasi-static problem. A soft constraint module and a hard constraint module, composed of physical equations, are constructed. The soft constraints are then integrated into the neural network's objective function, while the hard constraint module is utilized to predict device performance and physical field. Stochastic gradient descent is used to minimize the residual of the physical equations during PISNN training. Subsequently, the structural parameters and operating parameters of the PMECD are modified to verify the generalization ability of the model. Our results indicate that PISNN accurately and efficiently predicts the EM field distribution and the output torque. Furthermore, our prediction results for permanent magnet eddy current devices with different parameters demonstrate the potential of the method for transfer learning.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [31] Physics-Informed Neural Networks with skip connections for modeling and
    Kittelsen, Jonas Ekeland
    Antonelo, Eric Aislan
    Camponogara, Eduardo
    Imsland, Lars Struen
    APPLIED SOFT COMPUTING, 2024, 158
  • [32] Parareal with a Physics-Informed Neural Network as Coarse Propagator
    Ibrahim, Abdul Qadir
    Goetschel, Sebastian
    Ruprecht, Daniel
    EURO-PAR 2023: PARALLEL PROCESSING, 2023, 14100 : 649 - 663
  • [33] A physics-informed neural network for Kresling origami structures
    Liu, Chen-Xu
    Wang, Xinghao
    Liu, Weiming
    Yang, Yi-Fan
    Yu, Gui-Lan
    Liu, Zhanli
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 269
  • [34] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [35] Physics-informed deep neural network for image denoising
    Xypakis, Emmanouil
    De Turris, Valeria
    Gala, Fabrizio
    Ruocco, Giancarlo
    Leonetti, Marco
    OPTICS EXPRESS, 2023, 31 (26) : 43838 - 43849
  • [36] Physics-informed neural network for polarimetric underwater imaging
    Hu, Haofeng
    Han, Yilin
    Li, Xiaobo
    Jiang, Liubing
    Che, Li
    Liu, Tiegen
    Zhai, Jingsheng
    OPTICS EXPRESS, 2022, 30 (13) : 22512 - 22522
  • [37] Physics-informed neural network for diffusive wave model
    Hou, Qingzhi
    Li, Yixin
    Singh, Vijay P.
    Sun, Zewei
    JOURNAL OF HYDROLOGY, 2024, 637
  • [38] Studying turbulent flows with physics-informed neural networks and sparse data
    Hanrahan, S.
    Kozul, M.
    Sandberg, R. D.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2023, 104
  • [39] A physics-informed deep neural network for surrogate modeling in classical elasto-plasticity
    Eghbalian, Mahdad
    Pouragha, Mehdi
    Wan, Richard
    COMPUTERS AND GEOTECHNICS, 2023, 159
  • [40] Physics-informed graph convolutional neural network for modeling fluid flow and heat convection
    Peng, Jiang-Zhou
    Hua, Yue
    Li, Yu-Bai
    Chen, Zhi-Hua
    Wu, Wei-Tao
    Aubry, Nadine
    PHYSICS OF FLUIDS, 2023, 35 (08)