Strong convergence of an inertial Halpern type algorithm in Banach spaces

被引:0
|
作者
Ranjbar, Sajad [1 ]
机构
[1] Higher Educ Ctr Eghlid, Dept Math, Eghlid, Iran
关键词
Fixed point; Strong convergence; Iterative methods; Halpern iteration; Accretive operator; MAXIMAL MONOTONE-OPERATORS; COMMON FIXED-POINTS; ACCRETIVE-OPERATORS; NONEXPANSIVE RETRACTS; ASYMPTOTIC-BEHAVIOR; THEOREMS; SEMIGROUPS; MAPPINGS; ZEROS;
D O I
10.1007/s12215-022-00748-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we obtain the strong convergence of the new modified Halpern iteration process x(n+1) = alpha(n)u+(1-alpha(n))TnP(x(n) + theta(n)(x(n) - x(n-1))), n = 1,2,3, ... , to a common fixed point of {T-n}, where {T-n}(n=1)(infinity) is a family of nonexpansive mappings on the closed and convex subset C of a Banach space X, P : X -> C is a nonexpansive retraction, {alpha(n)} subset of [0, 1] and {theta(n)} subset of R+. Some applications of this result are also presented.
引用
收藏
页码:1561 / 1570
页数:10
相关论文
共 50 条
  • [31] Strong convergence of Browder’s and Halpern’s type iterations in Hilbert spaces
    Kanokwan Wongchan
    Satit Saejung
    [J]. Positivity, 2018, 22 : 969 - 982
  • [32] Attractive points and Halpern-type strong convergence theorems in Hilbert spaces
    Takahashi, Wataru
    Wong, Ngai-Ching
    Yao, Jen-Chih
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2015, 17 (02) : 301 - 311
  • [33] Strong convergence of Browder's and Halpern's type iterations in Hilbert spaces
    Wongchan, Kanokwan
    Saejung, Satit
    [J]. POSITIVITY, 2018, 22 (04) : 969 - 982
  • [34] A STRONG CONVERGENCE HALPERN-TYPE INERTIAL ALGORITHM FOR SOLVING SYSTEM OF SPLIT VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS
    Mebawondu, A. A.
    Jolaoso, L. O.
    Abass, H. A.
    Oyewole, O. K.
    Aremu, K. O.
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (06): : 2762 - 2791
  • [35] Attractive points and Halpern-type strong convergence theorems in Hilbert spaces
    Wataru Takahashi
    Ngai-Ching Wong
    Jen-Chih Yao
    [J]. Journal of Fixed Point Theory and Applications, 2015, 17 : 301 - 311
  • [36] Strong Convergence of Halpern Iteration for Products of Finitely Many Resolvents of Maximal Monotone Operators in Banach Spaces
    Timnak, Sara
    Naraghirad, Eskandar
    Hussain, Nawab
    [J]. FILOMAT, 2017, 31 (15) : 4673 - 4693
  • [37] ON STRONG CONVERGENCE OF PRAMARTS IN BANACH SPACES
    Saadoune, Mohammed
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2013, 33 (01): : 1 - 27
  • [38] STRONG CONVERGENCE OF AN ITERATIVE ALGORITHM FOR THE SPLIT EQUALITY PROBLEM IN BANACH SPACES
    Wang, Meiying
    Xu, Tongxin
    Shi, Luoyi
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [39] STRONG CONVERGENCE OF AN ITERATIVE ALGORITHM FOR THE SPLIT EQUALITY PROBLEM IN BANACH SPACES
    Wang, Meiying
    Xu, Tongxin
    Shi, Luoyi
    [J]. Journal of Nonlinear Functional Analysis, 2022, 2022
  • [40] STRONG CONVERGENCE OF AN ITERATIVE ALGORITHM FOR THE SPLIT EQUALITY PROBLEM IN BANACH SPACES
    Wang, Meiying
    Xu, Tongxin
    Shi, Luoyi
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022