Network pharmacology, molecular docking, combined with experimental verification to explore the role and mechanism of shizhifang decoction in the treatment of hyperuricemia

被引:0
|
作者
Wu, Zhiyuan [1 ,2 ,3 ,4 ]
Wang, Chuanxu [1 ,2 ,3 ,4 ]
Yang, Feng [1 ,2 ,3 ,4 ]
Zhou, Jiabao [1 ,2 ,3 ,4 ]
Zhang, Xuming [1 ,2 ,3 ,4 ]
Xin, Jiadong [1 ,2 ,3 ,4 ]
Gao, Jiandong [1 ,2 ,3 ,4 ]
机构
[1] Shanghai Univ Tradit Chinese Med, Dept Nephrol, Shuguang Hosp, Shanghai, Peoples R China
[2] Shanghai Univ Tradit Chinese Med, TCM Inst Kidney Dis, Shanghai, Peoples R China
[3] Shanghai Univ Tradit Chinese Med, Key Lab Liver & Kidney Dis, Minist Educ, Shanghai, Peoples R China
[4] Shanghai Univ Tradit Chinese Med, Shanghai Key Lab Tradit Chinese Clin Med, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
ERK1/2 signaling pathway; Cell apoptosis; Hyperuricemia; Network pharmacology; Molecular docking; Mechanism research; OXIDATIVE STRESS; URIC-ACID; PROGRESSION; APOPTOSIS; ERK1/2;
D O I
10.1016/j.heliyon.2024.e24865
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ethnopharmacological relevance: Shizhifang Decoction, a traditional Chinese medicine prescription formulated by Professor Zheng Pingdong of Shuguang Hospital, has been widely utilized in clinical settings for the treatment of hyperuricemia due to its proven safety and efficacy. Objective: In this study, we used network pharmacology, molecular docking technology, and experimental validation to elucidate the therapeutic effects and underlying mechanisms of Shizhifang Decoction in managing hyperuricemia. Methods: Quality control and component identification of the freeze-dried powder of Shizhifang Decoction were conducted using ultra-high performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Active ingredients and their corresponding targets were obtained from Traditional Chinese Medicine Systems Pharmacology, Traditional Chinese Medicine Information Database, The Encyclopedia of Traditional Chinese Medicine, and other databases. Disease-related targets for hyperuricemia were collected from GeneCards and DisGeNET databases. The Venny platform is used to screen common targets for drug active ingredients and diseases. Subsequently, we constructed an active component-target-disease interaction network using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, create a component disease common target network using Cytoscape 3.9.1 software, from which core targets were selected. Import common targets into the Database for Annotation, Visualization and Integrated Discovery (DAVID) for Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Molecular docking was then conducted to validate the binding capacity of key active ingredients and their associated targets in Shizhifang Decoction. The theoretical predictions were further confirmed through in vitro and in vivo experiments. Result: A total of 35 active ingredients and 597 action targets were identified, resulting in 890 disease-related targets for hyperuricemia. After comprehensive analysis, 99 common targets were determined. Protein-protein interaction network analysis revealed crucial relationships between these targets and hyperuricemia. Among them, 12 core targets (CASP3, IL1B, IL6, TNF, TP53, GAPDH, PTGS2, MYC, INS, VEGFA, ESR1, PPARG) were identified. Gene Ontology enrichment analysis demonstrated significant associations with the regulation of inflammatory response, cell apoptosis, and the positive regulation of extracellular regulated protein kinases 1 and extracellular regulated protein kinases 2 cascades. Kyoto Encyclopedia of Genes and Genomes pathway analysis highlighted inflammation and apoptosis-related pathways as critical mediators of Shizhifang Decoction's effects on hyperuricemia. Molecular docking studies further supported the interactions between apoptosis-related proteins and active ingredients in the extracellular regulated protein kinases 1/2 signaling pathway. In vitro experiments confirmed the downregulation of apoptosis-related proteins (caspase-3, Bax, Bcl-2) and the inhibition of the extracellular regulated protein kinases 1/2 signaling pathway by Shizhifang Decoction. These findings were also validated in animal models, demonstrating the potential of Shizhifang Decoction to mitigate renal injury induced by hyperuricemia through extracellular regulated protein kinases 1/2 -mediated inhibition of renal tubular epithelial cell apoptosis. Conclusion: Our study provides valuable insights into the main mechanism by which Shizhifang Decoction ameliorates hyperuricemia. By targeting the ERK1/2 signaling pathway and modulating cell apoptosis, Shizhifang Decoction exhibits promising therapeutic potential for the treatment of hyperuricemia. These findings support the continued exploration and development of Shizhifang Decoction as a potential herbal remedy for hyperuricemia management.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Identification of Active Compounds and Mechanism of Huangtu Decoction for the Treatment of Ulcerative Colitis by Network Pharmacology Combined with Experimental Verification
    Chen, Wenwen
    He, Lin
    Zhong, Lian
    Sun, Jiayi
    Zhang, Lilin
    Wei, Daneng
    Wu, Chunjie
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2021, 15 : 4125 - 4140
  • [22] Network Pharmacology, Molecular Docking, and Experimental Validation to Investigate the Mechanism of Qifu Longkui Decoction in the Treatment of Colorectal Cancer
    Xiong, Yaling
    Liu, Yihao
    Chen, Xia
    Tang, Shuiwen
    Jian, Zhiyuan
    NATURAL PRODUCT COMMUNICATIONS, 2024, 19 (12)
  • [23] Mechanism of Simiao Decoction in the treatment of atherosclerosis based on network pharmacology prediction and molecular docking
    Li, Qian
    Chai, Yihui
    Li, Wen
    Guan, Liancheng
    Fan, Yizi
    Chen, Yunzhi
    MEDICINE, 2023, 102 (36) : E35109
  • [24] Network pharmacology and molecular docking to elucidate the mechanism of pulsatilla decoction in the treatment of colon cancer
    Liu, Huan
    Hu, Yuting
    Qi, Baoyu
    Yan, Chengqiu
    Wang, Lin
    Zhang, Yiwen
    Chen, Liang
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [25] Exploring the mechanism of Suanzaoren decoction in treatment of insomnia based on network pharmacology and molecular docking
    Wang, Shuxiao
    Zhao, Yan
    Hu, Xingang
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [26] Exploring the mechanism of Erchen decoction in the treatment of atherosclerosis based on network pharmacology and molecular docking
    Li, Wenwen
    Zhang, Guowei
    Zhao, Zhenfeng
    Zuo, Yaoyao
    Sun, Zhenhai
    Chen, Shouqiang
    MEDICINE, 2023, 102 (46) : E35248
  • [27] Network Pharmacology Strategy to Investigate the Pharmacological Mechanism of Siwu Decoction on Primary Dysmenorrhea and Molecular Docking Verification
    Jiang, Dandan
    Wang, Xiaoyan
    Tian, Lijun
    Zhang, Yufeng
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2021, 2021
  • [28] Network pharmacology, molecular docking, and experimental verification reveal the mechanism of San-Huang decoction in treating acute kidney injury
    Liu, Jiahui
    Li, Zhongtang
    Lao, Yunlan
    Jin, Xiaoming
    Wang, Yuzhi
    Jiang, Beibei
    He, Riming
    Yang, Shudong
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [29] Study on the Mechanism of Baimai Ointment in the Treatment of Osteoarthritis Based on Network Pharmacology and Molecular Docking with Experimental Verification
    Zhu, Yingyin
    Zhong, Wanling
    Peng, Jing
    Wu, Huichao
    Du, Shouying
    FRONTIERS IN GENETICS, 2021, 12
  • [30] Analysis of the Mechanism of GuizhiFuling Wan in Treating Adenomyosis Based on Network Pharmacology Combined with Molecular Docking and Experimental Verification
    Shi, Yaxin
    Zhang, Chengyuan
    Wang, Zilu
    Zhang, Yiran
    Liu, Zhiyong
    Wang, Xin
    Shi, Wei
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022