3D-Printed Flat-Bone-Mimetic Bioceramic Scaffolds for Cranial Restoration

被引:14
|
作者
Zhang, Yihang [1 ]
He, Fupo [1 ]
Zhang, Qiang [2 ]
Lu, Haotian [3 ]
Yan, Shengtao [3 ,4 ]
Shi, Xuetao [2 ]
机构
[1] Guangdong Univ Technol, Sch Electromech Engn, Guangzhou 510006, Peoples R China
[2] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510641, Peoples R China
[3] Peking Union Med Coll, Grad Sch, Beijing 100730, Peoples R China
[4] China Japan Friendship Hosp, Dept Emergency, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
VASCULARIZED BONE; TISSUE; MUSCLE;
D O I
10.34133/research.0255
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial bones are typical flat bones with sandwich structures, consisting of a diploe in the middle region and 2 outer compact tables. In this study, we originally developed 2 types of flat-bone-mimetic beta-tricalcium phosphate bioceramic scaffolds (Gyr-Comp and Gyr-Tub) by high-precision vat-photopolymerization-based 3-dimensional printing. Both scaffolds had 2 outer layers and an inner layer with gyroid pores mimicking the diploe structure. The outer layers of Gyr-Comp scaffolds simulated the low porosity of outer tables, while those of Gyr-Tub scaffolds mimicked the tubular pore structure in the tables of flat bones. The Gyr-Comp and Gyr-Tub scaffolds possessed higher compressive strength and noticeably promoted in vitro cell proliferation, osteogenic differentiation, and angiogenic activities compared with conventional scaffolds with cross-hatch structures. After implantation into rabbit cranial defects for 12 weeks, Gyr-Tub achieved the best repairing effects by accelerating the generation of bone tissues and blood vessels. This work provides an advanced strategy to prepare biomimetic biomaterials that fit the structural and functional needs of efficacious bone regeneration.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds
    Shao, H.
    Sun, M.
    Zhang, F.
    Liu, A.
    He, Y.
    Fu, J.
    Yang, X.
    Wang, H.
    Gou, Z.
    JOURNAL OF DENTAL RESEARCH, 2018, 97 (01) : 68 - 76
  • [32] Evaluating the effect of pore size for 3d-printed bone scaffolds
    Seehanam, Saran
    Khrueaduangkham, Suppakrit
    Sinthuvanich, Chomdao
    Sae-Ueng, Udom
    Srimaneepong, Viritpon
    Promoppatum, Patcharapit
    HELIYON, 2024, 10 (04)
  • [33] 3D-printed biomimetic bone implant polymeric composite scaffolds
    Oladapo, Bankole
    Zahedi, Abolfazl
    Ismail, Sikiru
    Fernando, Wattala
    Ikumapayi, Omolayo
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 126 (9-10): : 4259 - 4267
  • [34] 3D printed bioceramic/biodegradable polymer scaffolds for bone tissue engineering
    Yu, Jiayi
    Xu, Yanyi
    Li, Shan
    Seifert, Gabrielle
    Becker, Matthew
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [35] Designing osteogenic interfaces on 3D-Printed thermoplastic bone scaffolds
    Negi, Ankita
    Goswami, Kajal
    Diwan, Himanshi
    Agrawal, Garima
    Murab, Sumit
    MATERIALS TODAY CHEMISTRY, 2025, 45
  • [36] Towards resorbable 3D-printed scaffolds for craniofacial bone regeneration
    Karanth, Divakar
    Song, Kaidong
    Macey, L. Martin
    Meyer, Delaney R.
    Dolce, Calogero
    Huang, Yong
    Holliday, L. Shannon
    ORTHODONTICS & CRANIOFACIAL RESEARCH, 2023, 26 : 188 - 195
  • [37] 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures
    Lim, Ho-Kyung
    Hong, Seok-Jin
    Byeon, Sun-Ju
    Chung, Sung-Min
    On, Sung-Woon
    Yang, Byoung-Eun
    Lee, Jong-Ho
    Byun, Soo-Hwan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (18) : 1 - 12
  • [38] 3D-printed biomimetic bone implant polymeric composite scaffolds
    Bankole Oladapo
    Abolfazl Zahedi
    Sikiru Ismail
    Wattala Fernando
    Omolayo Ikumapayi
    The International Journal of Advanced Manufacturing Technology, 2023, 126 : 4259 - 4267
  • [39] Mechanical performance of 3D-printed porous nanocomposite bone scaffolds
    Hong, Jung Ki
    Roman, Maren
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [40] Comparison of osteogenic capability of 3D-printed bioceramic scaffolds and granules with different porosities for clinical translation
    Yue, Xusong
    Zhao, Liben
    Yang, Jun
    Jiao, Xiaoyi
    Wu, Fanghui
    Zhang, Yan
    Li, Yifan
    Qiu, Jiandi
    Ke, Xiurong
    Sun, Xiaoliang
    Yang, Xianyan
    Gou, Zhongru
    Zhang, Lei
    Yang, Guojing
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11