A class of strongly convergent subgradient extragradient methods for solving quasimonotone variational inequalities

被引:2
|
作者
Rehman, Habib ur [1 ,2 ]
Kumam, Poom [1 ,2 ]
Ozdemir, Murat [4 ]
Yildirim, Isa [4 ]
Kumam, Wiyada [3 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Ctr Excellence Theoret & Computat Sci TaCS CoE, Fac Sci, Dept Math, Room SCL 802 Fixed Point Lab,Sci Lab Bldg,126 Pra, Bangkok 10140, Thailand
[2] King Mongkuts Univ Technol Thonburi KMUTT, KMUTTFixed Point Res Lab, Room SCL 802 Fixed Point Lab,Sci Lab Bldg,126 Pra, Bangkok 10140, Thailand
[3] Rajamangala Univ Technol Thanyaburi RMUTT, Fac Sci & Technol, Dept Math & Comp Sci, Program Appl Stat,Appl Math Sci & Engn Res Unit A, Pathum Thani 12110, Thailand
[4] Ataturk Univ, Dept Math, TR-25240 Erzurum, Turkiye
关键词
variational inequality problem; subgradient extragradient method; strong convergence results; quasimonotone operator; Lipschitz continuity; FIXED-POINTS; SYSTEMS;
D O I
10.1515/dema-2022-0202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The primary goal of this research is to investigate the approximate numerical solution of variational inequalities using quasimonotone operators in infinite-dimensional real Hilbert spaces. In this study, the sequence obtained by the proposed iterative technique for solving quasimonotone variational inequalities converges strongly toward a solution due to the viscosity-type iterative scheme. Furthermore, a new technique is proposed that uses an inertial mechanism to obtain strong convergence iteratively without the requirement for a hybrid version. The fundamental benefit of the suggested iterative strategy is that it substitutes a monotone and non-monotone step size rule based on mapping (operator) information for its Lipschitz constant or another line search method. This article also provides a numerical example to demonstrate how each method works.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] A modified subgradient extragradient method for solving monotone variational inequalities
    Songnian He
    Tao Wu
    [J]. Journal of Inequalities and Applications, 2017
  • [22] Two strong convergence subgradient extragradient methods for solving variational inequalities in Hilbert spaces
    Duong Viet Thong
    Gibali, Aviv
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2019, 36 (01) : 299 - 321
  • [23] The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space
    Censor, Y.
    Gibali, A.
    Reich, S.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) : 318 - 335
  • [24] Convergence of a subgradient extragradient algorithm for solving monotone variational inequalities
    Yang, Jun
    Liu, Hongwei
    Li, Guaiwei
    [J]. NUMERICAL ALGORITHMS, 2020, 84 (01) : 389 - 405
  • [25] A NEW DOUBLE INERTIAL SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING QUASIMONOTONE VARIATIONAL INEQUALITY PROBLEMS
    George, R.
    Ofem, A.E.
    Mebawondu, A.A.
    Akutsah, F.
    Alshammari, F.
    Narain, O.K.
    [J]. Journal of Industrial and Management Optimization, 2025, 21 (03) : 2074 - 2090
  • [26] A new modified subgradient extragradient method for solving variational inequalities
    Migorski, Stanislaw
    Fang, Changjie
    Zeng, Shengda
    [J]. APPLICABLE ANALYSIS, 2021, 100 (01) : 135 - 144
  • [27] Convergence of Relaxed Inertial Subgradient Extragradient Methods for Quasimonotone Variational Inequality Problems
    Ogwo, G. N.
    Izuchukwu, C.
    Shehu, Y.
    Mewomo, O. T.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [28] Self-adaptive subgradient extragradient-type methods for solving variational inequalities
    Ma, Beibei
    Wang, Wanyu
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [29] Two strong convergence subgradient extragradient methods for solving variational inequalities in Hilbert spaces
    Duong Viet Thong
    Aviv Gibali
    [J]. Japan Journal of Industrial and Applied Mathematics, 2019, 36 : 299 - 321
  • [30] Convergence of a subgradient extragradient algorithm for solving monotone variational inequalities
    Jun Yang
    Hongwei Liu
    Guaiwei Li
    [J]. Numerical Algorithms, 2020, 84 : 389 - 405