A class of strongly convergent subgradient extragradient methods for solving quasimonotone variational inequalities

被引:2
|
作者
Rehman, Habib ur [1 ,2 ]
Kumam, Poom [1 ,2 ]
Ozdemir, Murat [4 ]
Yildirim, Isa [4 ]
Kumam, Wiyada [3 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Ctr Excellence Theoret & Computat Sci TaCS CoE, Fac Sci, Dept Math, Room SCL 802 Fixed Point Lab,Sci Lab Bldg,126 Pra, Bangkok 10140, Thailand
[2] King Mongkuts Univ Technol Thonburi KMUTT, KMUTTFixed Point Res Lab, Room SCL 802 Fixed Point Lab,Sci Lab Bldg,126 Pra, Bangkok 10140, Thailand
[3] Rajamangala Univ Technol Thanyaburi RMUTT, Fac Sci & Technol, Dept Math & Comp Sci, Program Appl Stat,Appl Math Sci & Engn Res Unit A, Pathum Thani 12110, Thailand
[4] Ataturk Univ, Dept Math, TR-25240 Erzurum, Turkiye
关键词
variational inequality problem; subgradient extragradient method; strong convergence results; quasimonotone operator; Lipschitz continuity; FIXED-POINTS; SYSTEMS;
D O I
10.1515/dema-2022-0202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The primary goal of this research is to investigate the approximate numerical solution of variational inequalities using quasimonotone operators in infinite-dimensional real Hilbert spaces. In this study, the sequence obtained by the proposed iterative technique for solving quasimonotone variational inequalities converges strongly toward a solution due to the viscosity-type iterative scheme. Furthermore, a new technique is proposed that uses an inertial mechanism to obtain strong convergence iteratively without the requirement for a hybrid version. The fundamental benefit of the suggested iterative strategy is that it substitutes a monotone and non-monotone step size rule based on mapping (operator) information for its Lipschitz constant or another line search method. This article also provides a numerical example to demonstrate how each method works.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Strongly Convergent Subgradient Extragradient-Halpern Method for Solving a Class of Bilevel Pseudomonotone Variational Inequalities
    Anh T.V.
    [J]. Vietnam Journal of Mathematics, 2017, 45 (3) : 317 - 332
  • [2] A New Inertial Subgradient Extragradient method for Solving Quasimonotone Variational Inequalities
    Rehman, Habib Ur
    Kumam, Wiyada
    Sombut, Kamonrat
    [J]. THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 981 - 992
  • [3] A Class of Novel Mann-Type Subgradient Extragradient Algorithms for Solving Quasimonotone Variational Inequalities
    Wairojjana, Nopparat
    Argyros, Ioannis K.
    Shutaywi, Meshal
    Deebani, Wejdan
    Argyros, Christopher I.
    [J]. SYMMETRY-BASEL, 2021, 13 (07):
  • [4] Revisiting subgradient extragradient methods for solving variational inequalities
    Tan, Bing
    Qin, Xiaolong
    Cho, Sun Young
    [J]. NUMERICAL ALGORITHMS, 2022, 90 (04) : 1593 - 1615
  • [5] Revisiting subgradient extragradient methods for solving variational inequalities
    Bing Tan
    Xiaolong Qin
    Sun Young Cho
    [J]. Numerical Algorithms, 2022, 90 : 1593 - 1615
  • [6] ALTERNATED INERTIAL SUBGRADIENT EXTRAGRADIENT METHODS FOR SOLVING VARIATIONAL INEQUALITIES
    Zhou, Z.
    Tan, B.
    Cho, S. Y.
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (11) : 2593 - 2604
  • [7] A subgradient extragradient algorithm with inertial effects for solving strongly pseudomonotone variational inequalities
    Fan, Jingjing
    Liu, Liya
    Qin, Xiaolong
    [J]. OPTIMIZATION, 2020, 69 (09) : 2199 - 2215
  • [8] Halpern subgradient extragradient algorithm for solving quasimonotone variational inequality problems
    Yotkaew, Pongsakorn
    Rehman, Habib Ur
    Panyanak, Bancha
    Pakkaranang, Nuttapol
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (01) : 249 - 262
  • [9] A modified subgradient extragradient method with non-monotonic step sizes for solving quasimonotone variational inequalities
    Thong, Duong Viet
    Li, Xiao-Huan
    Dung, Vu Tien
    Thang, Hoang Van
    Long, Luong Van
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [10] Extragradient type projection algorithm for solving quasimonotone variational inequalities
    Wang, W. Y.
    Ma, B. B.
    [J]. OPTIMIZATION, 2024, 73 (08) : 2639 - 2655