Degradation mechanism of LiNi0.8Co0.1Mn0.1O2 cathode after ambient storage and self-repairing strategy by electrolyte additive

被引:3
|
作者
Li, Guanjie [1 ,2 ]
Mo, Changyong [1 ,2 ]
Cai, Qinqin [1 ,2 ]
Li, Zifei [1 ,2 ]
Li, Weishan [1 ,2 ]
Liao, Youhao [1 ,2 ]
机构
[1] South China Normal Univ, Natl & Local Joint Engn Res Ctr MPTES High Energy, Engn Res Ctr MTEES, Minist Educ, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Sch Chem, Key Lab ETESPG GHEI, Guangzhou 510006, Peoples R China
关键词
Damaged LiNi0.8Co0.1Mn0.1O2 cathode; Ambient storage; Electrolyte additive; Electrode/electrolyte interface; Lithium-ion batteries; LAYERED OXIDE CATHODES; ELECTROCHEMICAL PERFORMANCE; ION; STABILITY; IMPROVE; LINI0.8CO0.1MN0.1O2;
D O I
10.1016/j.cej.2023.144382
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As a next-generation cathode material for lithium-ion batteries, the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode undergoes significant performance degradation after ambient storage, hindering its commercial development. Herein, the failure mechanism of the stored NCM811 material was elaborately investigated from the perspective of electrolyte/electrode interfaces. The result manifests that the impurities generated on the NCM811 surface during the storage are mainly LiOH and Li2CO3, accompanied by a few transition metals-based hydroxides and carbonates. These substances can readily catalyze the oxidative decomposition of electrolytes through electro-chemical pathways, which should be the main culprit for the fast capacity fading. The adverse effects of surface impurities can be effectively eliminated after introducing a Lewis acid additive into traditional liquid electrolytes. The multifunctional electrolyte additive in the electrolyte firstly serves as an anion receptor to induce the dissolution of contaminants. Then it constructs a stable electrode/electrolyte interphase film to isolate these detrimental substances from electrodes. The NCM811 cathode, after 1-day storage at an 80% RH environment, is almost completely recovered in the additive-containing electrolyte, maintaining a capacity retention rate of 80% after 100 cycles (44% for the baseline electrolyte). The practicability of this strategy is verified by graphite parallel to NCM811 pouch cells, which exhibit superior cyclability than the pristine cell without storage. This work not only reveals a novel insight into the mechanism underlying the degradation of nickel-rich materials following ambient storage but also offers a viable strategy for self-repairing moderately degraded materials, which is of profound commercial significance.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Improving the single crystal LiNi0.8Co0.1Mn0.1O2 cathode material performance by fluorine doping
    Zhang, Pengfei
    Liu, Zhaofeng
    Ma, Ben
    Li, Ping
    Zhou, Yingke
    Tian, Xiaohui
    CERAMICS INTERNATIONAL, 2021, 47 (23) : 33843 - 33852
  • [42] Silver Nanocoating of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries
    Li, Xintong
    Chang, Kai
    Abbas, Somia M.
    El-Tawil, Rasha S.
    Abdel-Ghany, Ashraf E.
    Hashem, Ahmed M.
    Wang, Hua
    Coughlin, Amanda L.
    Zhang, Shixiong
    Mauger, Alain
    Zhu, Likun
    Julien, Christian M.
    MICROMACHINES, 2023, 14 (05)
  • [43] Rich-Nickel Ternary Layered Oxide LiNi0.8Co0.1Mn0.1O2 Cathode Material
    Feng, Ze
    Sun, Dan
    Tang, Yougen
    Wang, Haiyan
    PROGRESS IN CHEMISTRY, 2019, 31 (2-3) : 442 - 454
  • [44] Reevaluation of thermal stability of Ni-rich oxide cathode LiNi0.8Co0.1Mn0.1O2
    Yan, Chao
    Yang, Xiaofang
    Shan, Jingning
    Zhao, Hao
    Ma, Guoming
    Ju, Yiguang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [45] Synthesis and characteristics of layered LiNi0.8Co0.1Mn0.1O2 cathode material for lithium rechargeable batteries
    Wang, Xi-Min
    Wang, Xian-You
    Yi, Si-Yong
    Cao, Jun-Qi
    Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering, 2007, 7 (04): : 817 - 821
  • [46] Ultra-high temperature reaction mechanism of LiNi0.8Co0.1Mn0.1O2 electrode
    Wu, Changjun
    Wu, Yu
    Feng, Xuning
    Wang, Huaibin
    Zhang, Fukui
    Chen, Siqi
    Li, Biao
    Deng, Tao
    Ouyang, Minggao
    Journal of Energy Storage, 2022, 52
  • [47] Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design
    Tang, Lin-bo
    Liu, Yang
    Wei, Han-xin
    Yan, Cheng
    He, Zhen-jiang
    Li, Yun-jiao
    Zheng, Jun-chao
    JOURNAL OF ENERGY CHEMISTRY, 2021, 55 : 114 - 123
  • [48] Effect of niobium doping to enhance electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode material
    Kim, Yu-Ri
    Yoo, Ye-Wan
    Hwang, Do-Young
    Shim, Tae-Yeon
    Kang, Chea-Yun
    Park, Hye-Jin
    Kim, Hyun-Soo
    Lee, Seung-Hwan
    SOLID STATE IONICS, 2023, 389
  • [49] Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification
    Jan, S. Savut
    Nurgul, S.
    Shi, Xiaoqin
    Xia, Hui
    Pang, Huan
    ELECTROCHIMICA ACTA, 2014, 149 : 86 - 93
  • [50] Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB
    Gan, Zhanggen
    Hu, Guorong
    Peng, Zhongdong
    Cao, Yanbing
    Tong, Hui
    Du, Ke
    APPLIED SURFACE SCIENCE, 2019, 481 : 1228 - 1238