Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting

被引:41
|
作者
Li, Yanhong [1 ]
Guo, Ziting [1 ,2 ]
Zhao, Zhihao [1 ,2 ]
Gao, Yikui [1 ,2 ]
Yang, Peiyuan [1 ]
Qiao, Wenyan [1 ,2 ]
Zhou, Linglin [1 ,2 ]
Wang, Jie [1 ,2 ]
Wang, Zhong Lin [1 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Coll Nanosci & Technol, Beijing 100049, Peoples R China
[3] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
Water wave energy; Triboelectric nanogenerator; Output performance; Multi-layered structure; Self-charge excitation; PERFORMANCE; DENSITY;
D O I
10.1016/j.apenergy.2023.120792
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As one of the promising renewable and clean energy sources, water waves have attracted intensive attention and are expected to convert into electricity to alleviate energy demand. The emergence of triboelectric nanogenerator (TENG) provides a new idea for harvesting and utilizing this low-frequency and random energy, but the low output performance of TENG hinders its widespread application. In this work, an effective strategy that combines multi-layered structure design and external circuit optimization is proposed to efficiently scavenge the water wave energy. Consequently, an average power density up to 27.8 W m- 3 Hz-1 (corresponding output power: 194.5 mu W) has been achieved on the multi-layered TENG. Meanwhile, this strategy also demonstrated that the average power density can be effectively improve to almost 9 times that of the multi-layered TENG without external circuit when triggered by water wave. This work not only provides an efficient strategy for harvesting water wave energy, but also lays a foundation for advancing the practical application of TENG in renewable and clean energy.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter
    Su, Yuanjie
    Wen, Xiaonan
    Zhu, Guang
    Yang, Jin
    Chen, Jun
    Bai, Peng
    Wu, Zhiming
    Jiang, Yadong
    Wang, Zhong Lin
    NANO ENERGY, 2014, 9 : 186 - 195
  • [22] A Rotating Triboelectric Nanogenerator Driven by Bidirectional Swing for Water Wave Energy Harvesting
    Zhang, Chuguo
    Yuan, Wei
    Zhang, Baofeng
    Yang, Jiayi
    Hu, Yuexiao
    He, Lixia
    Zhao, Xuejiao
    Li, Xiuhan
    Wang, Zhong Lin
    Wang, Jie
    SMALL, 2023,
  • [23] UFO-Shaped Integrated Triboelectric Nanogenerator for Water Wave Energy Harvesting
    Wu, Shishuo
    Yang, Jiahong
    Wang, Yifei
    Liu, Bin
    Xiong, Yao
    Jiao, Haishuang
    Liu, Yang
    Bao, Rongrong
    Wang, Zhong Lin
    Sun, Qijun
    ADVANCED SUSTAINABLE SYSTEMS, 2023, 7 (09)
  • [24] Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage
    Yao, Yanyan
    Jiang, Tao
    Zhang, Limin
    Chen, Xiangyu
    Gao, Zhenliang
    Wang, Zhong Lin
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (33) : 21398 - 21406
  • [25] Integrated Multi layered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions
    Bai, Peng
    Zhu, Guang
    Lin, Zong-Hong
    Jing, Qingshen
    Chen, Jun
    Zhang, Gong
    Ma, Jusheng
    Wang, Zhong Lin
    ACS NANO, 2013, 7 (04) : 3713 - 3719
  • [26] A nanowire based triboelectric nanogenerator for harvesting water wave energy and its applications
    Li, Xiaoyi
    Tao, Juan
    Zhu, Jing
    Pan, Caofeng
    APL MATERIALS, 2017, 5 (07):
  • [27] A Rotating Triboelectric Nanogenerator Driven by Bidirectional Swing for Water Wave Energy Harvesting
    Zhang, Chuguo
    Yuan, Wei
    Zhang, Baofeng
    Yang, Jiayi
    Hu, Yuexiao
    He, Lixia
    Zhao, Xuejiao
    Li, Xiuhan
    Wang, Zhong Lin
    Wang, Jie
    SMALL, 2023, 19 (52)
  • [28] Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy
    Zhang, Chuguo
    He, Lixia
    Zhou, Linglin
    Yang, Ou
    Yuan, Wei
    Wei, Xuelian
    Liu, Yuebo
    Lu, Liang
    Wang, Jie
    Wang, Zhong Lin
    JOULE, 2021, 5 (06) : 1613 - 1623
  • [29] Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy
    Jiang, Tao
    Yao, Yanyan
    Xu, Liang
    Zhang, Limin
    Xiao, Tianxiao
    Wang, Zhong Lin
    NANO ENERGY, 2017, 31 : 560 - 567
  • [30] A columnar multi-layer sliding triboelectric nanogenerator for water wave energy harvesting independent of wave height and direction
    Xue Miao
    Hanxiao Yang
    Zekun Li
    Meifei Cheng
    Yilin Zhao
    Lingyu Wan
    Aifang Yu
    Junyi Zhai
    Nano Research, 2024, 17 : 3029 - 3034