Gradient-Guided Single Image Super-Resolution Based on Joint Trilateral Feature Filtering

被引:7
|
作者
Zuo, Yifan [1 ]
Xie, Jiacheng [1 ]
Wang, Hao [1 ]
Fang, Yuming [1 ]
Liu, Deyang [2 ]
Wen, Wenying [1 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Informat Management, Nanchang, Peoples R China
[2] Anqing Normal Univ, Sch Comp Sci & Informat, Anqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient-guided single image super-resolution; joint trilateral filter; deep convolutional neural network; NETWORK; PHOTOGRAPHY; FLASH;
D O I
10.1109/TCSVT.2022.3204642
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The state of the arts (SOTAs) of single image super-resolution always exploit guidance from gradient prior. The fusion of gradient guidance is implemented by channel-wise concatenation followed by a convolutional layer. However, the kernels sharing in spatial positions cannot adaptively tune the effect of gradient guidance for all feature positions. To resolve this problem, a novel network module is proposed to simulate the traditional Joint Trilateral Filter (JTF) by extending the definition domain from pixels to features. Moreover, to improve the efficiency and flexibility, the functions of JTF kernel generation for image features and gradient features are explicitly learned instead of individual kernel weights, e.g., the exponential functions in the traditional JTF. Based on the proposed JTF modules, this paper follows the gradient-guided framework which simultaneously infers high-resolution (HR) image features and HR gradient features within two parallel branches, respectively. Specifically, by treating image features and gradient features as cross guidance to each other, the proposed JTF modules adaptively adjust the fusion patterns for local features via a bi-directional way. By doing so, the quality of image features and gradient features is alternatively enhanced. Compared with SOTAs, the proposed JTF-SISR shows improvement which is evaluated for multiple upsampling scales and degradation modes on 5 synthetic datasets, i.e., Set5, Set14, B100, Urban100 and Manga109, and 1 real dataset, i.e., RealSRSet. The code is public in https://github.com/a239xjc/JTF-SISR.
引用
收藏
页码:505 / 520
页数:16
相关论文
共 50 条
  • [31] Joint Learning of Super-Resolution and Perceptual Image Enhancement for Single Image
    Xu, Yifei
    Zhang, Nuo
    Li, Li
    Sang, Genan
    Zhang, Yuewan
    Wang, Zhengyang
    Wei, Pingping
    IEEE ACCESS, 2021, 9 : 48446 - 48461
  • [32] Single Image Super-Resolution Using a Joint GMM Method
    Sandeep, Palakkattillam
    Jacob, Tony
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (09) : 4233 - 4244
  • [33] Joint Learning of Multiple Regressors for Single Image Super-Resolution
    Zhang, Kai
    Wang, Baoquan
    Zuo, Wangmeng
    Zhang, Hongzhi
    Zhang, Lei
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (01) : 102 - 106
  • [34] FG-SRGAN: A Feature-Guided Super-Resolution Generative Adversarial Network for Unpaired Image Super-Resolution
    Lian, Shuailong
    Zhou, Hejian
    Sun, Yi
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT I, 2019, 11554 : 151 - 161
  • [35] Joint-Feature Guided Depth Map Super-Resolution With Face Priors
    Yang, Shuai
    Liu, Jiaying
    Fang, Yuming
    Guo, Zongming
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (01) : 399 - 411
  • [36] Fast Single Image Super-Resolution by Self-trained Filtering
    Li, Dalong
    Simske, Steven
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2012, 6839 : 469 - 475
  • [37] Single depth map super-resolution via joint non-local self-similarity modeling and local multi-directional gradient-guided regularization
    Zhang, Yingying
    Ren, Chao
    Chen, Honggang
    Zhu, Ce
    Liu, Kai
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 97
  • [38] Depth map super-resolution via low-resolution depth guided joint trilateral up-sampling
    Yuan, Liang
    Jin, Xin
    Li, Yangguang
    Yuan, Chun
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 46 : 280 - 291
  • [39] Single Image Super-resolution With Detail Enhancement Based on Local Fractal Analysis of Gradient
    Xu, Hongteng
    Zhai, Guangtao
    Yang, Xiaokang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2013, 23 (10) : 1740 - 1754
  • [40] Single Image Super-Resolution Based on Global Dense Feature Fusion Convolutional Network
    Xu, Wang
    Chen, Renwen
    Huang, Bin
    Zhang, Xiang
    Liu, Chuan
    SENSORS, 2019, 19 (02)