AN ASYMPTOTIC THEORY FOR JUMP DIFFUSION MODELS

被引:0
|
作者
Jeong, Minsoo [1 ]
Park, Joon Y. [2 ,3 ]
机构
[1] Yonsei Univ, Seoul, South Korea
[2] Indiana Univ, Bloomington, IN USA
[3] Indiana Univ, Dept Econ, Bloomington, IN 47405 USA
基金
新加坡国家研究基金会;
关键词
INVARIANT MEASURE; LIMIT-THEOREMS;
D O I
10.1017/S0266466624000069
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper presents an asymptotic theory for recurrent jump diffusion models with well-defined scale functions. The class of such models is broad, including general nonstationary as well as stationary jump diffusions with state-dependent jump sizes and intensities. The asymptotics for recurrent jump diffusion models with scale functions are largely comparable to the asymptotics for the corresponding diffusion models without jumps. For stationary jump diffusions, our asymptotics yield the usual law of large numbers and the standard central limit theory with normal limit distributions. The asymptotics for nonstationary jump diffusions, on the other hand, are nonstandard and the limit distributions are given as generalized diffusion processes.
引用
收藏
页数:63
相关论文
共 50 条
  • [41] Wealth optimization models on jump-diffusion model
    Zheng, Yingchun
    Yang, Yunfeng
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (01) : 201 - 212
  • [42] CPA THEORY FOR JUMP DIFFUSION OF PARTICLES IN PERIODIC LATTICES
    KASKI, K
    TAHIRKHELI, RA
    ELLIOTT, RJ
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (02): : 209 - 220
  • [43] Matched asymptotic expansions in reaction diffusion theory
    Hegedus, Jeno
    ACTA SCIENTIARUM MATHEMATICARUM, 2006, 72 (1-2): : 415 - 417
  • [44] Approximating GARCH-jump models, jump-diffusion processes, and option pricing
    Duan, JC
    Ritchken, P
    Sun, ZQ
    MATHEMATICAL FINANCE, 2006, 16 (01) : 21 - 52
  • [45] Asymptotic properties of jump-diffusion processes with state-dependent switching
    Xi, Fubao
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (07) : 2198 - 2221
  • [46] Asymptotic stability of balanced methods for stochastic jump-diffusion differential equations
    Hu, Lin
    Gan, Siqing
    Wang, Xiaojie
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 238 : 126 - 143
  • [47] The theory of diffusion in cell models
    Longsworth, LG
    JOURNAL OF GENERAL PHYSIOLOGY, 1933, 17 (02): : 211 - 235
  • [48] Goodness-of-Fit Test in Multivariate Jump Diffusion Models
    Zhang, Shulin
    Zhou, Qian M.
    Zhu, Dongming
    Song, Peter X. -K.
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2019, 37 (02) : 275 - 287
  • [49] Continuity Correction for Barrier Options in Jump-Diffusion Models
    Dia, El Hadj Aly
    Lamberton, Damien
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01): : 866 - 900
  • [50] Convexity preserving jump-diffusion models for option pricing
    Ekstrom, Erik
    Tysk, Johan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (01) : 715 - 728