Automatic Modulation Classification in RIS-Assisted Wireless Communication Systems using Ensemble Learning Techniques

被引:2
|
作者
Vamsidhar, Subramanyam Raghu [1 ]
Dash, Soumya P. [1 ]
Acharya, Renuka [1 ]
Ghose, Debasish [2 ]
Lin, Yuan [2 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Elect Sci, Khordha 752050, Odisha, India
[2] Kristiania Univ Coll, Sch Econ Innovat & Technol, N-5022 Bergen, Norway
关键词
D O I
10.1109/VTC2023-Fall60731.2023.10333716
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study investigates the application of ensemble learning techniques for automatic modulation classification (AMC) in a reflective intelligent surface (RIS)-aided wireless communication system. The transmitter is considered to utilize five possible phase-shift keying and quadrature-amplitude modulation schemes for data transmission. The receiver extracts cumulant-based and spectral-based features from the received data, and employs three ensemble classifiers, namely XGBoost, LightGBM, and Random Forest for AMC. Furthermore, the important features for each classifier are identified, and their performance is computed and compared with the classifiers using all the features. Numerical results show that the LightGBM classifier performs the best in terms of AMC for the considered system and effectively classifies the modulation schemes at low signal-to-noise ratio values.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Enhanced Semantic Information Transfer on RIS-Assisted Communication Systems
    Ma, Junyu
    Li, Qiang
    Liu, Ronghua
    Pandharipande, Ashish
    Ge, Xiaohu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (08) : 2225 - 2229
  • [32] Performance Analysis of RIS-Assisted Ambient Backscatter Communication Systems
    Le, Anh-Tu
    Nguyen, Tan N.
    Tu, Lam-Thanh
    Tran, Tin-Phu
    Duy, Tran Trung
    Voznak, Miroslav
    Ding, Zhiguo
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (03) : 791 - 795
  • [33] Impact of IQ Imbalance on RIS-Assisted SISO Communication Systems
    Bouhlel, Asma
    Sakly, Anis
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [34] Deep Reinforcement Learning for RIS-Assisted FD Systems: Single or Distributed RIS?
    Faisal, Alice
    Al-Nahhal, Ibrahim
    Dobre, Octavia A.
    Ngatched, Telex M. N.
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (07) : 1563 - 1567
  • [35] RIS-Assisted Federated Learning in Multi-Cell Wireless Networks
    WANG Yiji
    WEN Dingzhu
    MAO Yijie
    SHI Yuanming
    ZTE Communications, 2023, 21 (01) : 25 - 37
  • [36] Wideband Sparse Cascaded Channel Estimation for RIS-Assisted Wireless Systems
    Mo, Xiaohao
    Gui, Lin
    Sang, Xichao
    Diao, Xiaqing
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 495 - 500
  • [37] Misfocus-Reduction in RIS-Assisted Ultra-Wideband Wireless Communication
    Huang, Zeyu
    Prueller, Richard
    Schwarz, Stefan
    Rupp, Markus
    2023 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT, EUCNC/6G SUMMIT, 2023, : 108 - 113
  • [38] Security performance analysis of RIS-assisted UAV wireless communication in industrial IoT
    Liu, Xinzhong
    Xie, Cong
    Xie, Wenwu
    Zhu, Peng
    Yang, Zhihe
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (04): : 5957 - 5973
  • [39] Security performance analysis of RIS-assisted UAV wireless communication in industrial IoT
    Xinzhong Liu
    Cong Xie
    Wenwu Xie
    Peng Zhu
    Zhihe Yang
    The Journal of Supercomputing, 2022, 78 : 5957 - 5973
  • [40] Federated Deep Reinforcement Learning for RIS-Assisted Indoor Multi-Robot Communication Systems
    Luo, Ruyu
    Ni, Wanli
    Tian, Hui
    Cheng, Julian
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (11) : 12321 - 12326