Use of quinhydrone as a promising cathode material for aqueous zinc-ion battery

被引:1
|
作者
Barathi, P. [1 ]
Vinothbabu, P. [1 ]
Sampath, S. [1 ]
机构
[1] Indian Inst Sci, Dept Inorgan & Phys Chem, Bangalore 560012, India
关键词
Quinhydrone; pH electrode; Aqueous batteries; Zinc; -ion; rechargeable battery; DFT; REDUCTION POTENTIALS; CRYSTAL-STRUCTURE; ENERGY-STORAGE; HIGH-CAPACITY; LITHIUM; COMPLEXES; COMPOSITE; QUINONE; CHARGE;
D O I
10.1016/j.est.2023.109154
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Aqueous zinc ion batteries have attracted attention in recent years due to growing demand for energy storage devices, cost effectiveness coupled with high energy densities. They are attractive for large-scale storage, longevity, and inherent safety. However, their development is relatively slow due to limited availability of solid inorganic frameworks wherein diffusion of Zn2+ is known to be sluggish. In the present study, traditional pH electrode redox system based on quinhydrone (QH) is proposed as a host cathode, which offers reversible and effective Zn2+ storage due to its reversible electron-donor acceptor characteristics. An attractive specific capacity of 232 mAh g-1 at 50 mA g-1 with a small polarization of 80 mV and a safe operating voltage of 1.0 V is observed. Unprecedently, the QH electrode exhibits a life span of over 2000 cycles with a fairly good capacity retention. Physicochemical characterization using X-ray diffraction (XRD), Fourier transform infrared (FTIR), Raman, nuclear magnetic resonance (NMR), and electron microscopy reveal structural evolution and reversibility of active material during charge - discharge. Density functional theory (DFT) is used to understand the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) levels to support the Zn2+ storage mechanism of QH.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] An Aqueous Zinc-Ion Battery Based on Copper Hexacyanoferrate
    Trocoli, Rafael
    La Mantia, Fabio
    CHEMSUSCHEM, 2015, 8 (03) : 481 - 485
  • [42] A Br-Doped BiOCl Cathode for High-Performance Aqueous Zinc-Ion Battery
    Lin, Li
    Hu, Zhen-Yu
    Li, Lin-Zhan
    Liu, Wan-Qiang
    PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON NEW ENERGY AND ELECTRICAL TECHNOLOGY, ISNEET 2023, 2024, 1255 : 285 - 290
  • [43] Direct synthesis of vanadium pentoxide powder with carbon recombination as aqueous zinc-ion battery cathode
    Jian Cui
    Jidong Ma
    Yinghao Yuan
    Siyong Gu
    Wenjun Zhou
    Houan Zhang
    Zhiqin Cao
    Journal of Applied Electrochemistry, 2024, 54 : 289 - 299
  • [44] Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery
    Liu, Cheng
    Luo, Zheng
    Deng, Wentao
    Wei, Weifeng
    Chen, Libao
    Pan, Anqiang
    Ma, Jianmin
    Wang, Chiwei
    Zhu, Limin
    Xie, Lingling
    Cao, Xiao-Yu
    Hu, Jiugang
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    ACS ENERGY LETTERS, 2021, 6 (02) : 675 - 683
  • [45] An ultralow-temperature aqueous zinc-ion battery
    Sun, Tianjiang
    Yuan, Xuming
    Wang, Ke
    Zheng, Shibing
    Shi, Jinqing
    Zhang, Qiu
    Cai, Wensheng
    Liang, Jing
    Tao, Zhanliang
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (11) : 7042 - 7047
  • [46] Paraffin Based Cathode-Electrolyte Interface for Highly Reversible Aqueous Zinc-Ion Battery
    Liu, Yu
    Zhi, Jian
    Hoang, Tuan K. A.
    Zhou, Min
    Han, Mei
    Wu, Yan
    Shi, Qiuyu
    Xing, Rong
    Chen, P.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 4840 - 4849
  • [47] Thiophene Based Self-Doped Conducting Polymers as Cathode for Aqueous Zinc-Ion Battery
    Chola, Noufal Merukan
    Nagarale, Rajaram K.
    BATTERIES & SUPERCAPS, 2022, 5 (11)
  • [48] A V2O3@N–C cathode material for aqueous zinc-ion batteries with boosted zinc-ion storage performance
    Huai-Zheng Ren
    Jian Zhang
    Bo Wang
    Hao Luo
    Fan Jin
    Tian-Ren Zhang
    An Ding
    Bo-Wen Cong
    Dian-Long Wang
    RareMetals, 2022, 41 (05) : 1605 - 1615
  • [49] A V2O3@N-C cathode material for aqueous zinc-ion batteries with boosted zinc-ion storage performance
    Ren, Huai-Zheng
    Zhang, Jian
    Wang, Bo
    Luo, Hao
    Jin, Fan
    Zhang, Tian-Ren
    Ding, An
    Cong, Bo-Wen
    Wang, Dian-Long
    RARE METALS, 2022, 41 (05) : 1605 - 1615
  • [50] A V2O3@N–C cathode material for aqueous zinc-ion batteries with boosted zinc-ion storage performance
    Huai-Zheng Ren
    Jian Zhang
    Bo Wang
    Hao Luo
    Fan Jin
    Tian-Ren Zhang
    An Ding
    Bo-Wen Cong
    Dian-Long Wang
    Rare Metals, 2022, 41 : 1605 - 1615