The Use of a Stable Super-Resolution Generative Adversarial Network (SSRGAN) on Remote Sensing Images

被引:5
|
作者
Pang, Boyu [1 ,2 ]
Zhao, Siwei [1 ]
Liu, Yinnian [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
super-resolution; generative adversarial network(s); hyperspectral images; remote sensing image enhancement; data processing; SUPER RESOLUTION;
D O I
10.3390/rs15205064
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Because of the complicated imaging conditions in space and the finite imaging systems on satellites, the resolution of remote sensing images is limited. The process of increasing an image's resolution, image super-resolution, aims to obtain a clearer image. High-resolution (HR) images are affected by various input conditions, such as motion, imaging blur, down-sampling matrix, and various types of noise. Changes in these conditions seriously affect low-resolution (LR) images, so if the imaging process is a pathological problem, super-resolution reconstruction is a pathological anti-problem. To optimize the imaging quality of satellites without changing the optical system, we chose to reconstruct images acquired by satellites using deep learning. We changed the original super-resolution generative adversarial nets network, upgraded the generator's network part to ResNet-50, and inserted an additional fully connected (FC) layer in the network of the discriminator part. We also modified the loss function by changing the weight of regularization loss from 2 x 10-8 to 2 x 10-9, aiming to preserve more detail. In addition, we carefully and specifically chose remote sensing images taken under low-light circumstances from GF-5 satellites to form a new dataset for training and validation. The test results proved that our method can obtain good results. The reconstruction peak signal-to-noise ratio (PSNR) at the scaling factors of 2, 3, and 4 reached 32.6847, 31.8191, and 30.5095 dB, respectively, and the corresponding structural similarity (SSIM) reached 0.8962, 0.8434, and 0.8124. The super-resolution speed was also satisfactory, making real-time reconstruction more probable.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Single Remote Sensing Image Super-Resolution via a Generative Adversarial Network With Stratified Dense Sampling and Chain Training
    Meng, Fanen
    Wu, Sensen
    Li, Yadong
    Zhang, Zhe
    Feng, Tian
    Liu, Renyi
    Du, Zhenhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 22
  • [42] IESRGAN: Enhanced U-Net Structured Generative Adversarial Network for Remote Sensing Image Super-Resolution Reconstruction
    Yue, Xiaohan
    Liu, Danfeng
    Wang, Liguo
    Benediktsson, Jon Atli
    Meng, Linghong
    Deng, Lei
    REMOTE SENSING, 2023, 15 (14)
  • [43] Single Image Super-Resolution: Depthwise Separable Convolution Super-Resolution Generative Adversarial Network
    Jiang, Zetao
    Huang, Yongsong
    Hu, Lirui
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [44] Image Super-Resolution Reconstruction Based on a Generative Adversarial Network
    Wu, Yun
    Lan, Lin
    Long, Huiyun
    Kong, Guangqian
    Duan, Xun
    Xu, Changzhuan
    IEEE ACCESS, 2020, 8 : 215133 - 215144
  • [45] Enhanced Discriminative Generative Adversarial Network for Face Super-Resolution
    Yang, Xi
    Lu, Tao
    Wang, Jiaming
    Zhang, Yanduo
    Wu, Yuntao
    Wang, Zhongyuan
    Xiong, Zixiang
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2018, PT II, 2018, 11165 : 441 - 452
  • [46] A multiresolution mixture generative adversarial network for video super-resolution
    Tian, Zhiqiang
    Wang, Yudiao
    Du, Shaoyi
    Lan, Xuguang
    PLOS ONE, 2020, 15 (07):
  • [47] Image super-resolution based on conditional generative adversarial network
    Gao, Hongxia
    Chen, Zhanhong
    Huang, Binyang
    Chen, Jiahe
    Li, Zhifu
    IET IMAGE PROCESSING, 2020, 14 (13) : 3006 - 3013
  • [48] Mars image super-resolution based on generative adversarial network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    Zhang, Yongqiang (yongqiang.zhang.hit@gmail.com); Ding, Mingli (mingli.ding.hit@gmail.com), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 108889 - 108898
  • [49] EESRGAN: Efficient & Effective Super-Resolution Generative Adversarial Network
    Tsai, An-Chao
    Tsou, Cheng-Han
    Wang, Jhing-Fa
    IETE TECHNICAL REVIEW, 2024, 41 (02) : 200 - 211
  • [50] Super-resolution PET imaging using a generative adversarial network
    Song, Tzu-An
    Chowdhury, Samadrita Roy
    El Fakhri, Georges
    Li, Quanzheng
    Dutta, Joyita
    JOURNAL OF NUCLEAR MEDICINE, 2019, 60