Deep neural network CSES-NET and multi-channel feature fusion for Alzheimer's disease diagnosis

被引:3
|
作者
Qiao, Jianping [1 ,4 ]
Zhang, Mowen [1 ]
Fan, Yanling [1 ]
Fang, Kunlun [1 ]
Zhao, Xiuhe [2 ]
Wang, Shengjun [2 ]
Wang, Zhishun [3 ]
机构
[1] Shandong Normal Univ, Sch Phys & Elect, Shandong Prov Key Lab Med Phys & Image Proc Techno, Jinan 250014, Peoples R China
[2] Shandong Univ, Qilu Hosp, Dept Neurol, Jinan 250012, Peoples R China
[3] Columbia Univ, Dept Psychiat, New York, NY 10032 USA
[4] Shandong Normal Univ, Sch Phys & Elect, 88 Wenhua East Rd, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Feature fusion; Genome-wide association study; sMRI; Alzheimer's disease; MILD COGNITIVE IMPAIRMENT; CHRONIC CIGARETTE-SMOKING; ALCOHOL; GENETICS;
D O I
10.1016/j.bspc.2023.105482
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Alzheimer's disease (AD) is an irreversible brain disease. The structural Magnetic Resonance Imaging (sMRI) has been widely used in the diagnosis of AD. However, the characteristic information from a single-mode is not comprehensive. In this paper, we proposed a Convolutional- Squeeze-Excitation-Softmax-NET (CSES-NET) deep neural network combined with multi-channel feature fusion for the diagnosis of AD. First, three kinds of features were extracted including patches based on voxel morphology, cortical features based on surface morphology, and radiomics features. Next, the residual network CSES-NET was proposed to extract the deep features from the patch images in which the features were re-scaled in the residual structure in order to fit the correlation between channels. Then, the fused features of the three channels were applied to classify AD/EMCI/LMCI/NC with the fully connected neural network. Finally, radiomics and cortical features were combined with genetic data for genome-wide association study to assess genetic variants. We performed experiments with 1539 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The experimental results verified that the proposed method improved the effectiveness of the model by extracting nonlinear deep features and fusing the multi-channel features. In addition, the genome-wide association study identified multiple risk SNPs loci which were associated with the pathological of AD and contributed to the early prevention and control of AD.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A multi-channel deep convolutional neural network for multi-classifying thyroid diseases
    Zhang, Xinyu
    Lee, Vincent C. S.
    Rong, Jia
    Lee, James C.
    Song, Jiangning
    Liu, Feng
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 148
  • [42] Automated Medical Diagnosis of Alzheimer's Disease Using an Efficient Net Convolutional Neural Network
    Agarwal, Deevyankar
    Berbis, Manuel Alvaro
    Luna, Antonio
    Lipari, Vivian
    Ballester, Julien Brito
    de la Torre-diez, Isabel
    JOURNAL OF MEDICAL SYSTEMS, 2023, 47 (01)
  • [43] Automated Medical Diagnosis of Alzheimer´s Disease Using an Efficient Net Convolutional Neural Network
    Deevyankar Agarwal
    Manuel Álvaro Berbís
    Antonio Luna
    Vivian Lipari
    Julien Brito Ballester
    Isabel de la Torre-Díez
    Journal of Medical Systems, 47
  • [44] Deep Convolution Neural Network Based System for Early Diagnosis of Alzheimer's Disease
    Janghel, R. R.
    Rathore, Y. K.
    IRBM, 2021, 42 (04) : 258 - 267
  • [45] Multi-channel Convolutional Neural Networks with Multi-level Feature Fusion for Environmental Sound Classification
    Chong, Dading
    Zou, Yuexian
    Wang, Wenwu
    MULTIMEDIA MODELING, MMM 2019, PT II, 2019, 11296 : 157 - 168
  • [46] Fusion of multi-scale feature extraction and adaptive multi-channel graph neural network for 12-lead ECG classification
    Chen, Teng
    Ma, Yumei
    Pan, Zhenkuan
    Wang, Weining
    Yu, Jinpeng
    Computer Methods and Programs in Biomedicine, 2025, 265
  • [47] Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis
    Heung-Il Suk
    Seong-Whan Lee
    Dinggang Shen
    Brain Structure and Function, 2016, 221 : 2569 - 2587
  • [48] Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis
    Suk, Heung-Il
    Lee, Seong-Whan
    Shen, Dinggang
    BRAIN STRUCTURE & FUNCTION, 2016, 221 (05): : 2569 - 2587
  • [49] Epileptic Seizure Detection for Multi-channel EEG with Deep Convolutional Neural Network
    Park, Chulkyun
    Choi, Gwangho
    Kim, Junkyung
    Kim, Sangdeok
    Kim, Tae-Loon
    Min, Kyeongyuk
    Jung, Ki-Young
    Chong, Jongwha
    2018 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2018, : 518 - 522
  • [50] Alphabetic Image Recognition Based on Multi-channel Diffractive Deep Neural Network
    Zhou, Yuanguo
    Shui, Shan
    Chen, Yu
    Liang, Bingyang
    Cai, Yijun
    2021 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2021), 2021, : 1384 - 1387