Mitochondrial Homeostasis Regulating Mitochondrial Number and Morphology Is a Distinguishing Feature of Skeletal Muscle Fiber Types in Marine Teleosts

被引:0
|
作者
Li, Busu [1 ,2 ]
Wang, Huan [1 ]
Zeng, Xianghui [1 ]
Liu, Shufang [1 ,2 ]
Zhuang, Zhimeng [1 ]
机构
[1] Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Natl Key Lab Mariculture Biobreeding & Sustainable, Qingdao 266071, Peoples R China
[2] Laoshan Lab, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
Takifugu rubripes; slow-twitch muscles; fast-twitch muscles; mitochondrial homeostasis; mitochondrial adaptation; HEAVY-CHAIN GENES; FUSION; BIOGENESIS; AUTOPHAGY; DYNAMICS; FISSION; STRESS; EXPRESSION; FATIGUE;
D O I
10.3390/ijms25031512
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fishes' skeletal muscles are crucial for swimming and are differentiated into slow-twitch muscles (SM) and fast-twitch muscles (FM) based on physiological and metabolic properties. Consequently, mitochondrial characteristics (number and morphology) adapt to each fiber type's specific functional needs. However, the mechanisms governing mitochondrial adaptation to the specific bioenergetic requirements of each fiber type in teleosts remain unclear. To address this knowledge gap, we investigated the mitochondrial differences and mitochondrial homeostasis status (including biogenesis, autophagy, fission, and fusion) between SM and FM in teleosts using Takifugu rubripes as a representative model. Our findings reveal that SM mitochondria are more numerous and larger compared to FM. To adapt to the increased mitochondrial number and size, SM exhibit elevated mitochondrial biogenesis and dynamics (fission/fusion), yet show no differences in mitochondrial autophagy. Our study provides insights into the adaptive mechanisms shaping mitochondrial characteristics in teleost muscles. The abundance and elongation of mitochondria in SM are maintained through elevated mitochondrial biogenesis, fusion, and fission, suggesting an adaptive response to fulfill the bioenergetic demands of SM that rely extensively on OXPHOS in teleosts. Our findings enhance our understanding of mitochondrial adaptations in diverse muscle types among teleosts and shed light on the evolutionary strategies of bioenergetics in fishes.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Impact of Exercise and Aging on Mitochondrial Homeostasis in Skeletal Muscle: Roles of ROS and Epigenetics
    Li, Jialin
    Wang, Zhe
    Li, Can
    Song, Yu
    Wang, Yan
    Bo, Hai
    Zhang, Yong
    [J]. CELLS, 2022, 11 (13)
  • [22] Exploring mitochondrial morphology in skeletal muscle: implications for highly trained individuals
    MacLeod, Blair
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 2023, 601 (14): : 2769 - 2770
  • [23] Changes in mitochondrial morphology lead to disruption of circadian rhythms in skeletal muscle
    Puig, L. Sardon
    Gabriel, B.
    Pillon, N. J.
    Smith, J.
    Sjogren, R.
    Canto, C.
    Krook, A.
    Zierath, J.
    [J]. DIABETOLOGIA, 2018, 61 : S228 - S229
  • [24] Chemotherapy impairs skeletal muscle mitochondrial homeostasis in early breast cancer patients
    Mallard, Joris
    Hucteau, Elyse
    Charles, Anne-Laure
    Bender, Laura
    Baeza, Claire
    Pelissie, Mathilde
    Trensz, Philippe
    Pflumio, Carole
    Kalish-Weindling, Michal
    Geny, Bernard
    Schott, Roland
    Favret, Fabrice
    Pivot, Xavier
    Hureau, Thomas J.
    Pagano, Allan F.
    [J]. JOURNAL OF CACHEXIA SARCOPENIA AND MUSCLE, 2022, 13 (03) : 1896 - 1907
  • [25] Role of estrogen on skeletal muscle mitochondrial function in ovariectomized rats: a time course study in different fiber types
    Cavalcanti-de-Albuquerque, J. P. A.
    Salvador, I. C.
    Martins, Eduarda Lopes
    Jardim-Messeder, D.
    Werneck-de-Castro, J. P. S.
    Galina, A.
    Carvalho, D. P.
    [J]. JOURNAL OF APPLIED PHYSIOLOGY, 2014, 116 (07) : 779 - 789
  • [26] The Role of Orai1 in Regulating Sarcoplasmic Calcium Release, Mitochondrial Morphology and Function in Myostatin Deficient Skeletal Muscle
    Sztretye, Monika
    Singlar, Zoltan
    Balogh, Norbert
    Kis, Greta
    Szentesi, Peter
    Angyal, Agnes
    Balatoni, Ildiko
    Csernoch, Laszlo
    Dienes, Beatrix
    [J]. FRONTIERS IN PHYSIOLOGY, 2020, 11
  • [27] Proliferation of Mitochondria in Chronically Stimulated Rabbit Skeletal Muscle—Transcription of Mitochondrial Genes and Copy Number of Mitochondrial DNA
    Jeanette Schultz
    Rudolf J. Wiesner
    [J]. Journal of Bioenergetics and Biomembranes, 2000, 32 : 627 - 634
  • [28] Proliferation of mitochondria in chronically stimulated rabbit skeletal muscle - Transcription of mitochondrial genes and copy number of mitochondrial DNA
    Schultz, J
    Wiesner, RJ
    [J]. JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2000, 32 (06) : 627 - 634
  • [29] 2 TYPES OF MITOCHONDRIAL CRYSTALS IN DISEASED HUMAN SKELETAL-MUSCLE FIBERS
    FARRANTS, GW
    HOVMOLLER, S
    STADHOUDERS, AM
    [J]. MUSCLE & NERVE, 1988, 11 (01) : 45 - 55
  • [30] Improved Tetanic Force and Mitochondrial Calcium Homeostasis by Astaxanthin Treatment in Mouse Skeletal Muscle
    Sztretye, Monika
    Singlar, Zoltan
    Szabo, Laszlo
    Angyal, Agnes
    Balogh, Norbert
    Vakilzadeh, Faranak
    Szentesi, Peter
    Dienes, Beatrix
    Csernoch, Laszlo
    [J]. ANTIOXIDANTS, 2020, 9 (02)