Predicting the antigenic evolution of SARS-COV-2 with deep learning

被引:23
|
作者
Han, Wenkai [1 ,2 ]
Chen, Ningning [1 ,2 ]
Xu, Xinzhou [3 ,4 ]
Sahil, Adil [1 ,2 ]
Zhou, Juexiao [1 ,2 ]
Li, Zhongxiao [1 ,2 ]
Zhong, Huawen [2 ]
Gao, Elva [5 ]
Zhang, Ruochi [6 ]
Wang, Yu [6 ]
Sun, Shiwei [7 ,8 ]
Cheung, Peter Pak-Hang [3 ,4 ]
Gao, Xin [1 ,2 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Elect & Math Sci & Engn Div, Comp Sci Program, Comp, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol KAUST, Computat Biosci Res Ctr, Thuwal 239556900, Saudi Arabia
[3] Chinese Univ Hong Kong, Dept Chem Pathol, Fac Med, Hong Kong, Peoples R China
[4] Chinese Univ Hong Kong, Li Ka Shing Inst Hlth Sci, Hong Kong, Peoples R China
[5] King Abdullah Univ Sci & Technol KAUST, KAUST Sch, Thuwal 239556900, Saudi Arabia
[6] Syneron Technol, Guangzhou 510000, Peoples R China
[7] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[8] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
LANGUAGE;
D O I
10.1038/s41467-023-39199-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The relentless evolution of SARS-CoV-2 poses a significant threat to public health, as it adapts to immune pressure from vaccines and natural infections. Gaining insights into potential antigenic changes is critical but challenging due to the vast sequence space. Here, we introduce the Machine Learning-guided Antigenic Evolution Prediction (MLAEP), which combines structure modeling, multi-task learning, and genetic algorithms to predict the viral fitness landscape and explore antigenic evolution via in silico directed evolution. By analyzing existing SARS-CoV-2 variants, MLAEP accurately infers variant order along antigenic evolutionary trajectories, correlating with corresponding sampling time. Our approach identified novel mutations in immunocompromised COVID-19 patients and emerging variants like XBB1.5. Additionally, MLAEP predictions were validated through in vitro neutralizing antibody binding assays, demonstrating that the predicted variants exhibited enhanced immune evasion. By profiling existing variants and predicting potential antigenic changes, MLAEP aids in vaccine development and enhances preparedness against future SARS-CoV-2 variants.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Origin and evolution of SARS-CoV-2
    Pagani, Isabel
    Ghezzi, Silvia
    Alberti, Simone
    Poli, Guido
    Vicenzi, Elisa
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (02):
  • [22] On the origin and evolution of SARS-CoV-2
    Singh, Devika
    Yi, Soojin, V
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2021, 53 (04): : 537 - 547
  • [23] Tracking SARS-CoV-2 evolution
    Hahn, A. M.
    Chaguza, C.
    Breban, M. L.
    Chen, N.
    Koch, T. R.
    Pham, K.
    Vogels, C. B. F.
    Grubaugh, N. D.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2022, 52 : 60 - 60
  • [24] On the origin and evolution of SARS-CoV-2
    Devika Singh
    Soojin V. Yi
    Experimental & Molecular Medicine, 2021, 53 : 537 - 547
  • [25] Origin and evolution of SARS-CoV-2
    Isabel Pagani
    Silvia Ghezzi
    Simone Alberti
    Guido Poli
    Elisa Vicenzi
    The European Physical Journal Plus, 138
  • [26] Deep learning identifies antigenic determinants of severe SARS-CoV-2 infection within T-cell repertoires
    Sidhom, John-William
    Baras, Alexander S.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [27] Deep learning identifies antigenic determinants of severe SARS-CoV-2 infection within T-cell repertoires
    John-William Sidhom
    Alexander S. Baras
    Scientific Reports, 11
  • [28] Deep mutational learning for the selection of therapeutic antibodies resistant to the evolution of Omicron variants of SARS-CoV-2
    Frei, Lester
    Gao, Beichen
    Han, Jiami
    Taft, Joseph M.
    Irvine, Edward B.
    Weber, Cedric R.
    Kumar, Rachita K.
    Eisinger, Benedikt N.
    Ignatov, Andrey
    Yang, Zhouya
    Reddy, Sai T.
    NATURE BIOMEDICAL ENGINEERING, 2025, : 552 - 565
  • [29] Forecasting SARS-CoV-2 spike protein evolution from small data by deep learning and regression
    King, Samuel
    Chen, Xinyi E.
    Ng, Sarah W. S.
    Rostin, Kimia
    Hahn, Samuel V.
    Roberts, Tylo
    Schwab, Janella C.
    Sekhon, Parneet
    Kagieva, Madina
    Reilly, Taylor
    Qi, Ruo Chen
    Salman, Paarsa
    Hong, Ryan J.
    Ma, Eric J.
    Hallam, Steven J.
    FRONTIERS IN SYSTEMS BIOLOGY, 2024, 4
  • [30] Selective Electrochemical Detection of SARS-CoV-2 Using Deep Learning
    Gecgel, Ozhan
    Ramanujam, Ashwin
    Botte, Gerardine G.
    VIRUSES-BASEL, 2022, 14 (09):