Predicting the antigenic evolution of SARS-COV-2 with deep learning

被引:23
|
作者
Han, Wenkai [1 ,2 ]
Chen, Ningning [1 ,2 ]
Xu, Xinzhou [3 ,4 ]
Sahil, Adil [1 ,2 ]
Zhou, Juexiao [1 ,2 ]
Li, Zhongxiao [1 ,2 ]
Zhong, Huawen [2 ]
Gao, Elva [5 ]
Zhang, Ruochi [6 ]
Wang, Yu [6 ]
Sun, Shiwei [7 ,8 ]
Cheung, Peter Pak-Hang [3 ,4 ]
Gao, Xin [1 ,2 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Elect & Math Sci & Engn Div, Comp Sci Program, Comp, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol KAUST, Computat Biosci Res Ctr, Thuwal 239556900, Saudi Arabia
[3] Chinese Univ Hong Kong, Dept Chem Pathol, Fac Med, Hong Kong, Peoples R China
[4] Chinese Univ Hong Kong, Li Ka Shing Inst Hlth Sci, Hong Kong, Peoples R China
[5] King Abdullah Univ Sci & Technol KAUST, KAUST Sch, Thuwal 239556900, Saudi Arabia
[6] Syneron Technol, Guangzhou 510000, Peoples R China
[7] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[8] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
LANGUAGE;
D O I
10.1038/s41467-023-39199-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The relentless evolution of SARS-CoV-2 poses a significant threat to public health, as it adapts to immune pressure from vaccines and natural infections. Gaining insights into potential antigenic changes is critical but challenging due to the vast sequence space. Here, we introduce the Machine Learning-guided Antigenic Evolution Prediction (MLAEP), which combines structure modeling, multi-task learning, and genetic algorithms to predict the viral fitness landscape and explore antigenic evolution via in silico directed evolution. By analyzing existing SARS-CoV-2 variants, MLAEP accurately infers variant order along antigenic evolutionary trajectories, correlating with corresponding sampling time. Our approach identified novel mutations in immunocompromised COVID-19 patients and emerging variants like XBB1.5. Additionally, MLAEP predictions were validated through in vitro neutralizing antibody binding assays, demonstrating that the predicted variants exhibited enhanced immune evasion. By profiling existing variants and predicting potential antigenic changes, MLAEP aids in vaccine development and enhances preparedness against future SARS-CoV-2 variants.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Predicting the antigenic evolution of SARS-COV-2 with deep learning
    Wenkai Han
    Ningning Chen
    Xinzhou Xu
    Adil Sahil
    Juexiao Zhou
    Zhongxiao Li
    Huawen Zhong
    Elva Gao
    Ruochi Zhang
    Yu Wang
    Shiwei Sun
    Peter Pak-Hang Cheung
    Xin Gao
    Nature Communications, 14
  • [2] Antigenic evolution of SARS-CoV-2 in immunocompromised hosts
    Smith, Cameron A.
    Ashby, Ben
    EVOLUTION MEDICINE AND PUBLIC HEALTH, 2023, 11 (01) : 90 - 100
  • [3] Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity
    Aguilar-Bretones, Muriel
    Fouchier, Ron A. M.
    Koopmans, Marion P. G.
    van Nierop, Gijsbert P.
    JOURNAL OF CLINICAL INVESTIGATION, 2023, 133 (01):
  • [4] Antigenic Cartography of SARS-CoV-2
    Astakhova, Ekaterina A.
    Morozov, Alexey A.
    Vavilova, Julia D.
    Filatov, Alexander V.
    BIOCHEMISTRY-MOSCOW, 2024, 89 (05) : 862 - 871
  • [5] Antigenic imprinting in SARS-CoV-2
    Reincke, S. Momsen
    Pruss, Harald
    Wilson, Ian A.
    Kreye, Jakob
    CLINICAL AND TRANSLATIONAL MEDICINE, 2022, 12 (07):
  • [6] Predicting SARS-CoV-2 infection duration at hospital admission:a deep learning solution
    Piergiuseppe Liuzzi
    Silvia Campagnini
    Chiara Fanciullacci
    Chiara Arienti
    Michele Patrini
    Maria Chiara Carrozza
    Andrea Mannini
    Medical & Biological Engineering & Computing, 2022, 60 : 459 - 470
  • [7] Predicting SARS-CoV-2 infection duration at hospital admission:a deep learning solution
    Liuzzi, Piergiuseppe
    Campagnini, Silvia
    Fanciullacci, Chiara
    Arienti, Chiara
    Patrini, Michele
    Carrozza, Maria Chiara
    Mannini, Andrea
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022, 60 (02) : 459 - 470
  • [8] The evolution of SARS-CoV-2
    Markov, Peter V.
    Ghafari, Mahan
    Beer, Martin
    Lythgoe, Katrina
    Simmonds, Peter
    Stilianakis, Nikolaos I.
    Katzourakis, Aris
    NATURE REVIEWS MICROBIOLOGY, 2023, 21 (06) : 361 - 379
  • [9] SARS-CoV-2 evolution
    Devi, Sharmila
    LANCET INFECTIOUS DISEASES, 2021, 21 (04): : 467 - 467
  • [10] The evolution of SARS-CoV-2
    Peter V. Markov
    Mahan Ghafari
    Martin Beer
    Katrina Lythgoe
    Peter Simmonds
    Nikolaos I. Stilianakis
    Aris Katzourakis
    Nature Reviews Microbiology, 2023, 21 : 361 - 379