Fast Helmet and License Plate Detection Based on Lightweight YOLOv5

被引:11
|
作者
Wei, Chenyang [1 ]
Tan, Zhao [1 ]
Qing, Qixiang [1 ]
Zeng, Rong [1 ]
Wen, Guilin [2 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Manufacture Vehicle Bod, Changsha 410082, Peoples R China
[2] Yanshan Univ, Sch Mech Engn, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
fast detection; helmet and license plate; lightweight YOLOv5; RHNP dataset; non-truth suppression;
D O I
10.3390/s23094335
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The integrated fast detection technology for electric bikes, riders, helmets, and license plates is of great significance for maintaining traffic safety. YOLOv5 is one of the most advanced single-stage object detection algorithms. However, it is difficult to deploy on embedded systems, such as unmanned aerial vehicles (UAV), with limited memory and computing resources because of high computational load and high memory requirements. In this paper, a lightweight YOLOv5 model (SG-YOLOv5) is proposed for the fast detection of the helmet and license plate of electric bikes, by introducing two mechanisms to improve the original YOLOv5. Firstly, the YOLOv5s backbone network and the Neck part are lightened by combining the two lightweight networks, ShuffleNetv2 and GhostNet, included. Secondly, by adopting an Add-based feature fusion method, the number of parameters and the floating-point operations (FLOPs) are effectively reduced. On this basis, a scene-based non-truth suppression method is proposed to eliminate the interference of pedestrian heads and license plates on parked vehicles, and then the license plates of the riders without helmets can be located through the inclusion relation of the target boxes and can be extracted. To verify the performance of the SG-YOLOv5, the experiments are conducted on a homemade RHNP dataset, which contains four categories: rider, helmet, no-helmet, and license plate. The results show that, the SG-YOLOv5 has the same mean average precision (mAP0.5) as the original; the number of model parameters, the FLOPs, and the model file size are reduced by 90.8%, 80.5%, and 88.8%, respectively. Additionally, the number of frames per second (FPS) is 2.7 times higher than that of the original. Therefore, the proposed SG-YOLOv5 can effectively achieve the purpose of lightweight and improve the detection speed while maintaining great detection accuracy.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Improved lightweight road damage detection based on YOLOv5
    LIU Chang
    SUN Yu
    CHEN Jin
    YANG Jing
    WANG Fengchao
    Optoelectronics Letters, 2025, 21 (05) : 314 - 320
  • [32] Lightweight UAV Detection Algorithm Based on Improved YOLOv5
    Peng Y.
    Tu X.
    Yang Q.
    Li R.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (12): : 28 - 38
  • [33] Lightweight Fire Detection Algorithm Based on Improved YOLOv5
    Zhang, Dawei
    Chen, Yutang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 809 - 816
  • [34] Lightweight Research of YOLOv5 Target Detection
    He, Yu
    Tian, Junwei
    Zhang, Zhen
    Wang, Qin
    Zhao, Peng
    Computer Engineering and Applications, 2023, 59 (01) : 92 - 99
  • [35] BDC-YOLOv5: a helmet detection model employs improved YOLOv5
    Zhao, Lihong
    Tohti, Turdi
    Hamdulla, Askar
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (08) : 4435 - 4445
  • [36] BDC-YOLOv5: a helmet detection model employs improved YOLOv5
    Lihong Zhao
    Turdi Tohti
    Askar Hamdulla
    Signal, Image and Video Processing, 2023, 17 : 4435 - 4445
  • [37] Traffic safety helmet wear detection based on improved YOLOv5 network
    Gui, Dongdong
    Sun, Bo
    OPTOELECTRONICS LETTERS, 2025, 21 (01) : 35 - 42
  • [38] Safety Helmet Wearing Detection Based on Jetson Nano and Improved YOLOv5
    Deng, Zaihui
    Yao, Chong
    Yin, Qiyu
    ADVANCES IN CIVIL ENGINEERING, 2023, 2023
  • [39] Traffic safety helmet wear detection based on improved YOLOv5 network
    GUI Dongdong
    SUN Bo
    Optoelectronics Letters, 2025, 21 (01) : 35 - 42
  • [40] Improved Plate Defect Detection Algorithm Based on YOLOv5
    Wang, Zijie
    Wang, Lan
    Zheng, Sihui
    IOT AS A SERVICE, IOTAAS 2023, 2025, 585 : 371 - 384