Simple Summary The effects of radiation exposure seem closely related to effects of old age-so much so that the idea of a radiation-age association came about in the 1960s. While not a new idea, modern technology is allowing us to revisit these ideas and explore them with a fresh perspective. Separately, there are gaps in the community's understanding of the effects of radiation and aging, such as with respect to low-level, long-term effects of radiation and estimating someone's biological age. To study their association, a number of tools exist that need to be efficiently integrated to study this complex and interdisciplinary field. This article includes an extensive literature review on the theory of these two topics, providing a detailed foundation for a current understanding. We then present a resource-agnostic approach for researchers in these areas, focusing on studying the association between the two. Primary points of interest are focused on indirect damage of radiation exposure via oxidative stress within a cell, a comprehensive table of functional estimators for biological age, and using modern computational tools and biology to overlap fields of study to develop and exploit a rad-age association.Abstract Multi-omics studies have emerged as powerful tools for tailoring individualized responses to various conditions, capitalizing on genome sequencing technologies' increasing affordability and efficiency. This paper delves into the potential of multi-omics in deepening our understanding of biological age, examining the techniques available in light of evolving technology and computational models. The primary objective is to review the relationship between ionizing radiation and biological age, exploring a wide array of functional, physiological, and psychological parameters. This comprehensive review draws upon an extensive range of sources, including peer-reviewed journal articles, government documents, and reputable websites. The literature review spans from fundamental insights into radiation effects to the latest developments in aging research. Ionizing radiation exerts its influence through direct mechanisms, notably single- and double-strand DNA breaks and cross links, along with other critical cellular events. The cumulative impact of DNA damage forms the foundation for the intricate process of natural aging, intersecting with numerous diseases and pivotal biomarkers. Furthermore, there is a resurgence of interest in ionizing radiation research from various organizations and countries, reinvigorating its importance as a key contributor to the study of biological age. Biological age serves as a vital reference point for the monitoring and mitigation of the effects of various stressors, including ionizing radiation. Ionizing radiation emerges as a potent candidate for modeling the separation of biological age from chronological age, offering a promising avenue for tailoring protocols across diverse fields, including the rigorous demands of space exploration.