Enhanced magnetic anisotropy and high hole mobility in magnetic semiconductor Ga1-x-y Fe x Ni y Sb

被引:0
|
作者
Deng, Zhi [1 ,2 ]
Wang, Hailong [1 ,2 ]
Wei, Qiqi [1 ,2 ]
Liu, Lei [1 ,2 ]
Sun, Hongli [1 ,2 ]
Pan, Dong [1 ,2 ]
Wei, Dahai [1 ,2 ]
Zhao, Jianhua [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Semicond, State Key Lab Superlatt & Microstruct, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100190, Peoples R China
基金
国家重点研发计划;
关键词
magnetic semiconductor; molecular beam epitaxy; Fe-Ni co-doping; magnetic anisotropy; hole mobility; TRANSPORT-PROPERTIES; FERROMAGNETISM; HETEROSTRUCTURES;
D O I
10.1088/1674-4926/45/1/012101
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
(Ga,Fe)Sb is a promising magnetic semiconductor (MS) for spintronic applications because its Curie temperature (T-C) is above 300 K when the Fe concentration is higher than 20%. However, the anisotropy constant K-u of (Ga,Fe)Sb is below 7.6 <bold>x</bold> 10(3) erg/cm(3) when Fe concentration is lower than 30%, which is one order of magnitude lower than that of (Ga,Mn)As. To address this issue, we grew Ga1-x-yFexNiySb films with almost the same x (approximate to 24%) and different y to characterize their magnetic and electrical transport properties. We found that the magnetic anisotropy of Ga0.76-yFe0.24NiySb can be enhanced by increasing y, in which K-u is negligible at y = 1.7% but increases to 3.8 <bold>x</bold> 10(5) erg/cm(3) at y = 6.1% (T-C = 354 K). In addition, the hole mobility (mu) of Ga1-x-yFexNiySb reaches 31.3 cm(2)/(Vs) at x = 23.7%, y = 1.7% (T-C = 319 K), which is much higher than the mobility of Ga1-xFexSb at x = 25.2% (mu = 6.2 cm(2)/(Vs)). Our results provide useful information for enhancing the magnetic anisotropy and hole mobility of (Ga,Fe)Sb by using Ni co-doping.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] THE EFFECT OF DOPANTS ON MAGNETIC PROPERTIES OF THE ORDERED FE65-XAL35-YMX,Y (MX,Y=GA,B,V; X,Y=5,1 0) ALLOYS
    Voronina, E.
    Yelsukov, Eu
    Korolyov, A. B.
    Klauss, H-H
    Dellmann, T.
    Granovsky, S.
    MAGNETISM AND MAGNETIC MATERIALS V, 2012, 190 : 534 - +
  • [32] Structural, ferroelectric and magnetic studies of Bi(1-x)Gd(x)Fe(1-y)Co(y)O3 thin films
    Kuang, Daihong
    Yang, Fangyuan
    Jing, Weiwen
    Xie, Haiyan
    Yang, Zhanjin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (23) : 17798 - 17805
  • [33] Magnetic, optical, and kinetic properties of Hg1-x - y Cd x Gd y Se crystals
    Kovalyuk, T. T.
    Maistruk, E. V.
    Maryanchuk, P. D.
    INORGANIC MATERIALS, 2016, 52 (05) : 447 - 451
  • [34] Heavily Fe-doped ferromagnetic semiconductor (In,Fe)Sb with high Curie temperature and large magnetic anisotropy
    Nguyen Thanh Tu
    Pham Nam Hai
    Le Duc Anh
    Tanaka, Masaaki
    APPLIED PHYSICS EXPRESS, 2019, 12 (10)
  • [35] THE FIRST PRINCIPLES CALCULATION OF STRUCTURAL, ELECTRONIC AND MAGNETIC PROPERTIES OF MnXY (X = Ru, Rh AND Y = Ga, Ge, Sb) ALLOYS
    Moniri, S. M.
    Nourbakhsh, Z.
    Mostajabodaavati, M.
    MODERN PHYSICS LETTERS B, 2011, 25 (26): : 2079 - 2090
  • [36] (Y1-x Bi x )3(Fe1-y Ga y )5O12 Solid Solution Region in the Ieneke Diagram
    Smirnova, M. N.
    Nipan, G. D.
    Nikiforova, G. E.
    INORGANIC MATERIALS, 2018, 54 (07) : 683 - 688
  • [37] Magnetic anisotropy energy of ferromagnetic shape memory alloys Ni2X(X=Fe, Co)Ga by first-principles calculations
    He, Wangqiang
    Ma, Xingqiao
    Liu, Zhuhong
    Wang, Yi
    Chen, Long-Qing
    AIP ADVANCES, 2017, 7 (07):
  • [38] Effects of hydrogen annealing and codoping (Mn, Fe, Ni, Ga, Y) of nanocrystalline Cu-doped ZnO dilute magnetic semiconductor
    Bououdina, Mohamed
    Dakhel, Aqeel Aziz
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2015, 69 (01):
  • [39] MAGNETIC-ANISOTROPY ASSOCIATED WITH IRON SUBSTITUTION IN Y2(COXFE1-X)17
    KHAN, WI
    MELVILLE, D
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1978, 48 (01): : 209 - 214
  • [40] Magnetic properties of Y(CoxNi1-x)3 compounds
    Burzo, E.
    Deac, I. G.
    Tetean, R.
    Creanga, I.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2008, 2 (10): : 643 - 645