Adaptive Channel Pruning for Trainability Protection

被引:0
|
作者
Liu, Jiaxin [1 ,2 ]
Zhang, Dazong [4 ]
Liu, Wei [1 ,2 ]
Li, Yongming [3 ]
Hu, Jun [2 ]
Cheng, Shuai [2 ]
Yang, Wenxing [1 ,2 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110167, Liaoning, Peoples R China
[2] Neusoft Reach Automot Technol Co, Shenyang 110179, Liaoning, Peoples R China
[3] Liaoning Univ Technol, Coll Sci, Liaoing 121001, Peoples R China
[4] BYD Auto Ind Co Ltd, Shenzhen 518118, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural networks; Trainability preservation; Model compression; Pruning;
D O I
10.1007/978-981-99-8549-4_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pruning is a widely used method for compressing neural networks, reducing their computational requirements by removing unimportant connections. However, many existing pruning methods prune pre-trained models by using the same pruning rate for each layer, neglecting the protection of model trainability and damaging accuracy. Additionally, the number of redundant parameters per layer in complex models varies, necessitating adjustment of the pruning rate according to model structure and training data. To overcome these issues, we propose a trainability-preserving adaptive channel pruning method that prunes during training. Our approach utilizes a model weight-based similarity calculation module to eliminate unnecessary channels while protecting model trainability and correcting output feature maps. An adaptive sparsity control module assigns pruning rates for each layer according to a preset target and aids network training. We performed experiments on CIFAR-10 and Imagenet classification datasets using networks of various structures. Our technique outperformed comparison methods at different pruning rates. Additionally, we confirmed the effectiveness of our technique on the object detection datasets VOC and COCO.
引用
收藏
页码:137 / 148
页数:12
相关论文
共 50 条
  • [31] Federated adaptive pruning with differential privacy
    Wang, Zhousheng
    Shen, Jiahe
    Dai, Hua
    Xu, Jian
    Yang, Geng
    Zhou, Hao
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 169
  • [32] Adaptive FSP: Adaptive Architecture Search with Filter Shape Pruning
    Kim, Aeri
    Lee, Seungju
    Kwon, Eunji
    Kang, Seokhyeong
    COMPUTER VISION - ACCV 2022, PT I, 2023, 13841 : 539 - 555
  • [33] Adaptive Greedy Layer Pruning: Iterative Layer Pruning with Subsequent Model Repurposing
    Ficsor, Tamas
    Berend, Gabor
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, PT I, NLDB 2024, 2024, 14762 : 271 - 284
  • [34] Scalable and channel-adaptive unequal error protection of images with LDPC codes
    Munteanu, Adrian
    Stoufs, Maryse R.
    Cornelis, Jan
    Schelkens, Peter
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, PROCEEDINGS, 2006, 4179 : 722 - 733
  • [35] Model Compression Using Progressive Channel Pruning
    Guo, Jinyang
    Zhang, Weichen
    Ouyang, Wanli
    Xu, Dong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (03) : 1114 - 1124
  • [36] Localization -aware channel pruning for object detection
    Xie, Zihao
    Zhu, Li
    Zhao, Lin
    Tao, Bo
    Liu, Liman
    Tao, Wenbing
    NEUROCOMPUTING, 2020, 403 : 400 - 408
  • [37] Dynamic channel pruning via activation gates
    Shun-Qiang Liu
    Yan-Xia Yang
    Xue-Jin Gao
    Kun Cheng
    Applied Intelligence, 2022, 52 : 16818 - 16831
  • [38] Dynamic channel pruning via activation gates
    Liu, Shun-Qiang
    Yang, Yan-Xia
    Gao, Xue-Jin
    Cheng, Kun
    APPLIED INTELLIGENCE, 2022, 52 (14) : 16818 - 16831
  • [39] Channel Pruning via Automatic Structure Search
    Lin, Mingbao
    Ji, Rongrong
    Zhang, Yuxin
    Zhang, Baochang
    Wu, Yongjian
    Tian, Yonghong
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 673 - 679
  • [40] Linear Combination Approximation of Feature for Channel Pruning
    Joo, Donggyu
    Kim, Doyeon
    Yi, Eojindl
    Kim, Junmo
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 2771 - 2780