Data-driven science and diversity in the All of Us Research Program

被引:8
|
作者
Ginsburg, Geoffrey S. [1 ]
Denny, Joshua C. [1 ]
Schully, Sheri D. [1 ]
机构
[1] NIH, All Us Res Program, Bethesda, MD 20892 USA
关键词
D O I
10.1126/scitranslmed.ade9214
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The National Institutes of Health's All of Us Research Program is an accessible platform that hosts genomic and phenotypic data to be collected from 1 million participants in the United States. Its mission is to accelerate medical research and clinical breakthroughs with a special emphasis on diversity.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] 2022 Review of Data-Driven Plasma Science
    Anirudh, Rushil
    Archibald, Rick
    Asif, M. Salman
    Becker, Markus M.
    Benkadda, Sadruddin
    Bremer, Peer-Timo
    Bude, Rick H. S.
    Chang, C. S.
    Chen, Lei
    Churchill, R. M.
    Citrin, Jonathan
    Gaffney, Jim A.
    Gainaru, Ana
    Gekelman, Walter
    Gibbs, Tom
    Hamaguchi, Satoshi
    Hill, Christian
    Humbird, Kelli
    Jalas, Soeren
    Kawaguchi, Satoru
    Kim, Gon-Ho
    Kirchen, Manuel
    Klasky, Scott
    Kline, John L.
    Krushelnick, Karl
    Kustowski, Bogdan
    Lapenta, Giovanni
    Li, Wenting
    Ma, Tammy
    Mason, Nigel J.
    Mesbah, Ali
    Michoski, Craig
    Munson, Todd
    Murakami, Izumi
    Najm, Habib N.
    Olofsson, K. Erik J.
    Park, Seolhye
    Peterson, J. Luc
    Probst, Michael
    Pugmire, David
    Sammuli, Brian
    Sawlani, Kapil
    Scheinker, Alexander
    Schissel, David P.
    Shalloo, Rob J.
    Shinagawa, Jun
    Seong, Jaegu
    Spears, Brian K.
    Tennyson, Jonathan
    Thiagarajan, Jayaraman
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2023, 51 (07) : 1750 - 1838
  • [42] Data-Driven Multiscale Science for Tread Compounding
    Burkhart, Craig
    Jiang, Bing
    Papakonstantopoulos, George
    Polinska, Patrycja
    Xu, Hongyi
    Sheridan, Richard J.
    Brinson, L. Catherine
    Chen, Wei
    TIRE SCIENCE AND TECHNOLOGY, 2023, 51 (02) : 114 - 131
  • [43] Cloud computing for data-driven science and engineering
    Simmhan, Yogesh
    Ramakrishnan, Lavanya
    Antoniu, Gabriel
    Goble, Carole
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2016, 28 (04): : 947 - 949
  • [44] Stream processing in data-driven computational science
    Liu, Ying
    Vijayakumar, Nithya N.
    Plate, Beth
    2006 7TH IEEE/ACM INTERNATIONAL CONFERENCE ON GRID COMPUTING, 2006, : 160 - +
  • [45] Perspectives on data-driven soil research
    Wadoux, Alexandre M. J. -C.
    Roman-Dobarco, Mercedes
    McBratney, Alex B.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2021, 72 (04) : 1675 - 1689
  • [46] Statistical Reliability of Data-Driven Science and Technology
    Takeuchi, Ichiro
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025,
  • [47] Reframing groundwater hydrology as a data-driven science
    Shapiro, Allen M.
    Day-Lewis, Frederick D.
    GROUNDWATER, 2022, 60 (04) : 455 - 456
  • [48] Data-Driven Computational Social Science: A Survey
    Zhang, Jun
    Wang, Wei
    Xia, Feng
    Lin, Yu-Ru
    Tong, Hanghang
    BIG DATA RESEARCH, 2020, 21
  • [49] EARTH MATERIALS SCIENCE IN A DATA-DRIVEN PARADIGM
    Kuwatani, Tatsu
    ELEMENTS, 2019, 15 (04) : 280 - 281
  • [50] Art, science, and immersion: data-driven experiences
    West, Ruth G.
    Monroe, Laura
    Morie, Jacquelyn Ford
    Aguilera, Julieta
    ENGINEERING REALITY OF VIRTUAL REALITY 2013, 2013, 8649