Nonlinear Beltrami equation: lower estimates of Schwarz lemma's type

被引:0
|
作者
Petkov, Igor [1 ]
Salimov, Ruslan [2 ]
Stefanchuk, Mariia [2 ]
机构
[1] Admiral Makarov Natl Univ Shipbldg, 9 Heroes Ukraine Ave, UA-54007 Mykolaiv, Ukraine
[2] NAS Ukraine, Inst Math, 3 Tereschenkivska St, UA-01024 Kiev 4, Ukraine
关键词
Beltrami equation; nonlinear Beltrami equation; nonlinear Cauchy-Riemann system; asymptotic behavior; Schwarz lemma; MAPPINGS;
D O I
10.4153/S0008439523000942
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a nonlinear Beltrami equation $f_\theta =\sigma \,|f_r|<^>m f_r$ in polar coordinates $(r,\theta ),$ which becomes the classical Cauchy-Riemann system under $m=0$ and $\sigma =ir.$ Using the isoperimetric technique, various lower estimates for $|f(z)|/|z|, f(0)=0,$ as $z\to 0,$ are derived under appropriate integral conditions on complex/directional dilatations. The sharpness of the above bounds is illustrated by several examples.
引用
收藏
页码:533 / 543
页数:11
相关论文
共 50 条
  • [41] On the local properties of solutions of the nonlinear Beltrami equation
    Salimov R.R.
    Stefanchuk M.V.
    Journal of Mathematical Sciences, 2020, 248 (2) : 203 - 216
  • [42] Nonlinear Beltrami equation and asymptotics of its solution
    Salimov R.
    Stefanchuk M.
    Journal of Mathematical Sciences, 2022, 264 (4) : 441 - 454
  • [43] Nonlinear Beltrami equation and τ-function for dispersionless hierarchies
    Bogdanov, LV
    Konopelchenko, BG
    PHYSICS LETTERS A, 2004, 322 (5-6) : 330 - 337
  • [44] Nonlinear Beltrami operators, Schauder estimates and bounds for the Jacobian
    Astala, Karl
    Clop, Albert
    Faraco, Daniel
    Jaaskelainen, Jarmo
    Koski, Aleksis
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (06): : 1543 - 1559
  • [45] Gromov's Non-Squeezing Theorem and Beltrami Type Equation
    Sukhov, Alexandre
    Tumanov, Alexander
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (10) : 1898 - 1905
  • [46] Lower bounds of tower type for Szemeredi's Uniformity Lemma
    Gowers, WT
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1997, 7 (02) : 322 - 337
  • [47] Schwarz’s lemma for the circle packings with the general combinatorics
    XiaoJun Huang
    JinSong Liu
    Liang Shen
    Science China Mathematics, 2010, 53 : 275 - 288
  • [48] AREA, CAPACITY AND DIAMETER VERSIONS OF SCHWARZ'S LEMMA
    Burckel, Robert B.
    Marshall, Donald E.
    Minda, David
    Poggi-Corradini, Pietro
    Ransford, Thomas J.
    CONFORMAL GEOMETRY AND DYNAMICS, 2008, 12 : 133 - 152
  • [49] Schwarz's lemma for the circle packings with the general combinatorics
    Huang XiaoJun
    Liu JinSong
    Shen Liang
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (02) : 275 - 288
  • [50] Schwarz’s lemma for the circle packings with the general combinatorics
    HUANG XiaoJun1
    2Institute of Mathematics
    Science China Mathematics, 2010, 53 (02) : 277 - 290