Nonlinear Beltrami equation: lower estimates of Schwarz lemma's type

被引:0
|
作者
Petkov, Igor [1 ]
Salimov, Ruslan [2 ]
Stefanchuk, Mariia [2 ]
机构
[1] Admiral Makarov Natl Univ Shipbldg, 9 Heroes Ukraine Ave, UA-54007 Mykolaiv, Ukraine
[2] NAS Ukraine, Inst Math, 3 Tereschenkivska St, UA-01024 Kiev 4, Ukraine
关键词
Beltrami equation; nonlinear Beltrami equation; nonlinear Cauchy-Riemann system; asymptotic behavior; Schwarz lemma; MAPPINGS;
D O I
10.4153/S0008439523000942
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a nonlinear Beltrami equation $f_\theta =\sigma \,|f_r|<^>m f_r$ in polar coordinates $(r,\theta ),$ which becomes the classical Cauchy-Riemann system under $m=0$ and $\sigma =ir.$ Using the isoperimetric technique, various lower estimates for $|f(z)|/|z|, f(0)=0,$ as $z\to 0,$ are derived under appropriate integral conditions on complex/directional dilatations. The sharpness of the above bounds is illustrated by several examples.
引用
收藏
页码:533 / 543
页数:11
相关论文
共 50 条