Necessary optimality conditions for a semivectorial bilevel optimization problem via a revisited Charnes-Cooper scalarization

被引:1
|
作者
Youness, El-Yahyaoui [1 ]
Lahoussine, Lafhim [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Dept Math, Lab LASMA, Fes, Morocco
关键词
Bilevel problem; Charnes-Cooper technique; optimal value function; optimality conditions;
D O I
10.1080/02331934.2023.2249916
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we investigate a multiobjective bilevel optimization problem with a vector-valued lower-level objective function. We revisit the Charnes-Cooper scalarization technique for multi-objective programs and use optimal value reformulation to transform the scalar problem into a one-level optimization problem. Using Mordukhovich's generalized differentiation calculus, a new subdifferential estimate and Lipschitz condition for the optimal value function of this problem are developed as a result of this reformulation. In addition, we construct first-order necessary optimality conditions in the smooth setting.
引用
收藏
页数:24
相关论文
共 50 条