Joint recognition and parameter estimation of cognitive radar work modes with LSTM-transformer

被引:7
|
作者
Zhang, Ziwei [1 ,3 ]
Zhu, Mengtao [1 ,3 ]
Li, Yunjie [2 ,3 ]
Li, Yan [1 ,3 ]
Wang, Shafei [1 ]
机构
[1] Beijing Inst Technol, Sch Cyberspace Sci & Technol, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518055, Peoples R China
关键词
Radar work mode; Automatic modulation recognition; Modulation parameter estimation; Multi-output learning; Transformer; IMPROVED ALGORITHM; CLASSIFICATION;
D O I
10.1016/j.dsp.2023.104081
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The recent developed cognitive radars can implement flexible work modes with programmable modulation types and optimized modulating values for each mode definition parameter. Automatic analysis of these work modes is a significant challenge for modern electromagnetic reconnaissance receivers. In this paper, a Multi-Output Multi-Structure (MOMS) learning-based processing framework is proposed for Joint inter -pulse automatic Modulation Recognition and Parameter Estimation (JMRPE-MOMS). We propose a label construction method as a feature interpretation method of the network to facilitate MOMS learning and utilize the correlations between labels for performance gain. Moreover, an LSTM-Transformer is designed to mine deep time-series characteristics, which can model local and global relationships and reduce quantization loss. The proposed framework can perform joint modulation recognition and parameter estimation (JMRPE) tasks simultaneously with flexible output structures including scalar output and vector output with fixed or variable sizes. Extensive simulations are performed based on the simulated radar work modes defined with pulse repetition interval (PRI) sequences. The simulation results validate the effectiveness and superiority of the proposed method especially under non-ideal electromagnetic environments.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Recognition of Emotion in Speech-related Audio Files with LSTM-Transformer
    Andayani, Felicia
    Theng, Lau Bee
    Tsun, Mark TeeKit
    Chua, Caslon
    5TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATICS (ICCI 2022), 2022, : 87 - 91
  • [2] Hybrid LSTM-Transformer Model for Emotion Recognition From Speech Audio Files
    Andayani, Felicia
    Theng, Lau Bee
    Tsun, Mark Teekit
    Chua, Caslon
    IEEE ACCESS, 2022, 10 : 36018 - 36027
  • [3] SwinFMCW: A Joint Swin Transformer and LSTM Method for Gesture and Identity Recognition Using FMCW Radar
    Sun, Beichen
    Xu, Zhimeng
    Wu, Zhenbin
    Zhang, Shanshan
    2022 CROSS STRAIT RADIO SCIENCE & WIRELESS TECHNOLOGY CONFERENCE, CSRSWTC, 2022,
  • [4] Automatic excavator action recognition and localisation for untrimmed video using hybrid LSTM-Transformer networks
    Martin, Abbey
    Hill, Andrew J.
    Seiler, Konstantin M.
    Balamurali, Mehala
    INTERNATIONAL JOURNAL OF MINING RECLAMATION AND ENVIRONMENT, 2024, 38 (05) : 353 - 372
  • [5] JMRPE-Net: Joint modulation recognition and parameter estimation of cognitive radar signals with a deep multitask network
    Zhu, Mengtao
    Zhang, Ziwei
    Li, Cong
    Li, Yunjie
    IET RADAR SONAR AND NAVIGATION, 2021, 15 (11): : 1508 - 1524
  • [6] On the Effectiveness of OTFS for Joint Radar Parameter Estimation and Communication
    Gaudio, Lorenzo
    Kobayashi, Mari
    Caire, Giuseppe
    Colavolpe, Giulio
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (09) : 5951 - 5965
  • [7] Automotive Radar Parameter Estimation for Cognitive Interference Mitigation
    Pirkani, Anum
    Norouzian, Fatemeh
    Cherniakov, Mikhail
    Gashinova, Marina
    2022 19TH EUROPEAN RADAR CONFERENCE (EURAD), 2022, : 161 - 164
  • [8] Joint parameter estimation employing coherent passive MIMO radar
    Wang, Liming
    He, Qian
    Blum, Rick S.
    Li, Huiyong
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (20): : 6859 - 6862
  • [9] Optimal Joint Target Detection and Parameter Estimation by MIMO Radar
    Tajer, Ali
    Jajamovich, Guido H.
    Wang, Xiaodong
    Moustakides, George V.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (01) : 127 - 145
  • [10] Joint Radar Target Detection and Parameter Estimation with MIMO OTFS
    Gaudio, Lorenzo
    Kobayashi, Mari
    Caire, Giuseppe
    Colavolpe, Giulio
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,