State of charge estimation of Li-ion batteries based on deep learning methods and particle-swarm-optimized Kalman filter

被引:20
|
作者
Li, Menghan [1 ,2 ]
Li, Chaoran [1 ,2 ]
Zhang, Qiang [3 ]
Liao, Wei [4 ]
Rao, Zhonghao [1 ,2 ]
机构
[1] Hebei Univ Technol, Sch Energy & Environm Engn, Tianjin 300401, Peoples R China
[2] Hebei Engn Res Ctr Adv Energy Storage Technol & Eq, Tianjin 300401, Peoples R China
[3] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Shandong, Peoples R China
[4] Beijing New Energy Technol Res Inst, Beijing 102399, Peoples R China
关键词
State of charge; Deep learning method; Li-ion battery; Kalman filter; MANAGEMENT;
D O I
10.1016/j.est.2023.107191
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The estimation of SOC is a key issue for the high-efficient and reliable operation of Li-ion batteries, thus has been increasingly concerned in current years with the development of electric vehicles. During dynamic test cycles, the accurate estimation of SOC is more difficult than steady operation conditions due to the fierce oscillations of the input signals. In this paper, a hybrid method of deep learning method and Kalman filter was proposed for the estimation of SOC. First, convolutional neural network or temporal convolutional network was combined with different variants of recurrent neural network, including long short term memory, gated recurrent unit, peeple hole long short term memory and bidirectional long short term memory, to achieve the estimation of SOC by capturing the spatial and temporal characteristics of input signals. Afterwards, the deep learning method was integrated with Kalman filter to eliminate the effects of transient signal oscillations and further improve the accuracy for the estimation of SOC. The results indicated that estimation accuracy and estimation time could be improved by less than 20 % by varying deep learning methods while after integrating deep learning method with Kalman filter, more than 45 % improvements in test accuracy could be achieved without obvious sacrifices in estimation time.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Estimation of Li-ion Battery State of Charge Based on Extended Kalman Filtering
    Ma Yan
    Bai Qingwen
    Liang Liang
    Chen Hong
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 6815 - 6819
  • [32] A Machine Learning Approach for State-of-Charge Estimation of Li-ion batteries
    Youssef, Heba Yahia
    Alkhaja, Latifa A.
    Almazrouei, Hajar Humaid
    Nassif, Ali Bou
    Ghenai, Chaouki
    AlShabi, Mohammad
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS IV, 2022, 12113
  • [33] Transfer Learning-Based State of Charge and State of Health Estimation for Li-Ion Batteries: A Review
    Shen, Liyuan
    Li, Jingjing
    Meng, Lichao
    Zhu, Lei
    Shen, Heng Tao
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (01): : 1465 - 1481
  • [34] Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter
    Zheng, Linfeng
    Zhu, Jianguo
    Wang, Guoxiu
    Lu, Dylan Dah-Chuan
    He, Tingting
    ENERGY, 2018, 158 : 1028 - 1037
  • [35] Estimation of State of Charge and Terminal Voltage of Li-ion Battery using Extended Kalman Filter
    Kumar, M. Satish
    Manasa, Thumpiri Reddy
    Raja, B.
    Selvajyothi, K.
    2020 6TH IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON), 2020, : 515 - 520
  • [36] A novel on-board state-of-charge estimation method for aged Li-ion batteries based on model adaptive extended Kalman filter
    Sepasi, Saeed
    Ghorbani, Reza
    Liaw, Bor Yann
    JOURNAL OF POWER SOURCES, 2014, 245 : 337 - 344
  • [37] On-line estimation of state-of-charge of Li-ion batteries in electric vehicle using the resampling particle filter
    Shao, Sai
    Bi, Jun
    Yang, Fan
    Guan, Wei
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2014, 32 : 207 - 217
  • [38] Robust State of Charge estimation for Li-ion batteries based on Extended State Observers
    Sandoval-Chileno, Marco A.
    Castaneda, Luis A.
    Luviano-Juarez, Alberto
    Gutierrez-Frias, Octavio
    Vazquez-Arenas, Jorge
    JOURNAL OF ENERGY STORAGE, 2020, 31
  • [39] A Modified State of Charge Estimation Method for Li-ion Batteries
    Sandrabyna, Mallikarjuna
    Sharma, Shrivatsal
    Basu, Suman
    2019 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE (ITEC-INDIA), 2019,
  • [40] Unified Approach for Estimation of State of Charge and Remaining Useful Life of Li-Ion batteries using Deep Learning
    Mullapudi, Bharat
    Shanmughasundaram, R.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,