Poly(lactic-co-glycolic) Acid (PLGA) Nanoparticles and Transdermal Drug Delivery: An Overview

被引:5
|
作者
Kumar, Lalit [1 ]
Kukreti, Gauree [2 ]
Rana, Ritesh [3 ]
Chaurasia, Himanshu [4 ]
Sharma, Anchal [5 ]
Sharma, Neelam [6 ]
Komal [7 ]
机构
[1] GNA Univ, GNA Sch Pharm, Dept Pharmaceut, Phagwara 144401, Punjab, India
[2] Sardar Bhagwan Singh Univ, Sch Pharmaceut Sci & Technol, Dept Pharmaceut, Balawala Dehradun 248161, Uttarakhand, India
[3] Himachal Inst Pharmaceut Educ & Res HIPER, Dept Pharmaceut Sci Pharmaceut, Hamirpur 177033, India
[4] Quantum Univ, Quantum Sch Hlth Sci, Dept Pharm, Vill Mandawar NH73 Roorkee-Dehradun Highway, Roorkee 247662, India
[5] Shiva Inst Pharm, Dept Pharmaceut, Bilaspur 174004, India
[6] Himachal Inst Pharmaceut Educ & Res HIPER, Dept Pharmaceut Sci Pharmacol, Hamirpur 177033, India
[7] Chandigarh Coll Pharm, Dept Pharmacol, Sahibzada Ajit Singh Naga 140307, Punjab, India
关键词
Biodegradable; dosage frequency; nanoparticles; preclinical; PLGA; transdermal; ANTIBACTERIAL ACTIVITY; TOPICAL DELIVERY; IN-VITRO; EX-VIVO; SKIN; SYSTEM; FORMULATION; DESIGN; NANOPRECIPITATION; EMULSIFICATION;
D O I
10.2174/0113816128275385231027054743
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background: Biodegradable polymeric nanoparticles have garnered pharmaceutical industry attention throughout the past decade. PLGA [Poly(lactic-co-glycolic acid)] is an excellent biodegradable polymer explored for the preparation of nanoparticles that are administered through various routes like intravenous and transdermal. PLGA's versatility makes it a good choice for the preparation of nanoparticles.Objective: The main objective of this review paper was to summarize methods of preparation and characterization of PLGA nanoparticles along with their role in the transdermal delivery of various therapeutic agents.Methods: A literature survey for the present review paper was done using various search engines like Pubmed, Google Scholar, and Science Direct.Results: In comparison to traditional transdermal administration systems, PLGA nanoparticles have demonstrated several benefits in preclinical investigations, including fewer side effects, low dosage frequency, high skin permeability, and simplicity of application.Conclusion: PLGA nanoparticles can be considered efficient nanocarriers for the transdermal delivery of drugs. Nevertheless, the clinical investigation of PLGA nanoparticles for the transdermal administration of therapeutic agents remains a formidable obstacle.
引用
收藏
页码:2940 / 2953
页数:14
相关论文
共 50 条
  • [11] PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems
    Perinelli D.R.
    Cespi M.
    Bonacucina G.
    Palmieri G.F.
    Journal of Pharmaceutical Investigation, 2019, 49 (4) : 443 - 458
  • [12] Development of biodegradable microneedles using dexamethasone and Poly Lactic-co-Glycolic Acid (PLGA) for cochlear drug delivery
    Bravo, Carlos
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [13] Fabrication and characterization of porous poly(lactic-co-glycolic acid) (PLGA) microspheres for use as a drug delivery system
    Bao, Trinh-Quang
    Hiep, Nguyen-Thi
    Kim, Yang-Hee
    Yang, Hun-Mo
    Lee, Byong-Taek
    JOURNAL OF MATERIALS SCIENCE, 2011, 46 (08) : 2510 - 2517
  • [14] PRODUCING AFLIBERCEPT LOADED POLY (LACTIC-co-GLYCOLIC ACID) [PLGA] NANOPARTICLES AS A NEW OCULAR DRUG DELIVERY SYSTEM AND ITS CHALLENGES
    Karagoz, Isil Kutluturk
    Allahverdiyev, Adil
    Demircioglu, Atifcan
    Abamor, Emrah Sefik
    Dinparvar, Sahar
    Bagirova, Melehat
    FRESENIUS ENVIRONMENTAL BULLETIN, 2021, 30 (02): : 1481 - 1493
  • [15] An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering
    Gentile, Piergiorgio
    Chiono, Valeria
    Carmagnola, Irene
    Hatton, Paul V.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (03): : 3640 - 3659
  • [16] Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives
    Pandita, Deepti
    Kumar, Sandeep
    Lather, Viney
    DRUG DISCOVERY TODAY, 2015, 20 (01) : 95 - 104
  • [17] Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview
    Blasi P.
    Journal of Pharmaceutical Investigation, 2019, 49 (4) : 337 - 346
  • [18] Correction to: Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery
    Fakhrossadat Emami
    Seyed Jamaleddin Mostafavi Yazdi
    Dong Hee Na
    Journal of Pharmaceutical Investigation, 2019, 49 (6) : 667 - 667
  • [19] Development and Evaluation of Acyclovir Loaded Poly Lactic-Co-Glycolic Acid Nanoparticles for Ocular Drug Delivery
    Mahajan, Harshal Dilip
    Wagh, Rajendra Dayaram
    Baviskar, Dheeraj Tukaram
    INTERNATIONAL JOURNAL OF PHARMACEUTICAL INVESTIGATION, 2021, 11 (01) : 63 - 68
  • [20] Highly Stable PEGylated Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for the Effective Delivery of Docetaxel in Prostate Cancers
    Cao, Long-Bin
    Zeng, Sha
    Zhao, Wei
    NANOSCALE RESEARCH LETTERS, 2016, 11