Microwave-assisted hydrothermal synthesis of type II ZnSe/ZnO heterostructures as photocatalysts for wastewater treatment

被引:3
|
作者
Arellano-Cortaza, M. [1 ]
Ramirez-Morales, E. [1 ]
Castillo, S. J. [2 ]
Lartundo-Rojas, L. [3 ]
Zamudio-Torres, I. [1 ]
Alejandro, E. M. Lopez [1 ]
Rojas-Blanco, L. [1 ]
机构
[1] Univ Juarez Autonoma Tabasco, Ave Univ S-N Zona Cultura,Colonia Magisterial, Villahermosa 86690, Tabasco, Mexico
[2] Univ Sonora, Dept Invest Fis, Blvd Luis Encinas & Rosales S-N, Hermosillo 83000, Sonora, Mexico
[3] Inst Politecn Nacl, Ctr Nanociencias & Micro Nanotecnol, Ave Luis Enr Enrique Erro S-N, Mexico City 07738, Mexico
关键词
Zinc oxide; Zinc selenide; Semiconductors; Photocatalyst; Heterostructure; ZNO THIN-FILMS; ZNO/ZNSE HETEROSTRUCTURES; GREEN SYNTHESIS; NANOPARTICLES; DEGRADATION; PERFORMANCE; FABRICATION; REDUCTION; 4-NITROPHENOL; COMPOSITES;
D O I
10.1016/j.ceramint.2023.05.009
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The ZnSe/ZnO heterostructures were synthesized with the microwave-assisted hydrothermal method, using zinc acetate and zinc nitrate as a source of Zn2+ ions. Materials were characterized by X-ray diffraction (XRD), X-ray photoemitted electron spectroscopy (XPS), Raman spectroscopy, and scanning electron microscopy (SEM). The incorporation of ZnSe into the ZnO matrix produced changes both in the size of the ZnO crystallites and in the lattice parameters. Optical and texture analyses revealed that ZnSe particles cause a decrease in gap energy and a greater than 90% increase in the specific surface area of ZnSe/ZnO heterostructures compared to bare ZnO particles. ZnSe/ZnO heterostructures synthesized using zinc acetate as a Zn ion source exhibited better photocatalytic performance in visible light compared to pure ZnO.
引用
收藏
页码:24027 / 24037
页数:11
相关论文
共 50 条
  • [21] Synthesis and characterization of LTA-type zeolite by microwave-assisted hydrothermal process
    Kumadani, Kumi
    Takamatsu, Yuichiro
    Minami, Takaaki
    Togo, Masakazu
    Murata, Hironobu
    Nakahira, Atsushi
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2019, 127 (08) : 585 - 589
  • [22] Microwave-Assisted Hydrothermal Synthesis of α-MoO3
    Fattakhova, Z. A.
    Vovkotrub, E. G.
    Zakharova, G. S.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2021, 66 (01) : 35 - 41
  • [23] Microwave-assisted hydrothermal synthesis of nanocrystalline SnO powders
    Pires, F. I.
    Joanni, E.
    Savu, R.
    Zaghete, M. A.
    Longo, E.
    Varela, J. A.
    MATERIALS LETTERS, 2008, 62 (02) : 239 - 242
  • [24] Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size
    Hu, Yuanyuan
    Liu, Chong
    Zhang, Yahong
    Ren, Nan
    Tang, Yi
    MICROPOROUS AND MESOPOROUS MATERIALS, 2009, 119 (1-3) : 306 - 314
  • [25] Rapid Synthesis of Dittmarite by Microwave-Assisted Hydrothermal Method
    Lai Zhenyu
    Qian Jueshi
    Lu Zhongyuan
    Li Qian
    Zou Qiulin
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2012, 2012
  • [26] Microwave-assisted hydrothermal synthesis of europium oxyorthosilicate (ESO)
    Ferrebee, Nathaniel C.
    Smith, Peter M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [27] Microwave-Assisted Hydrothermal Synthesis of Cellulose/Hydroxyapatite Nanocomposites
    Fu, Lian-Hua
    Liu, Yan-Jun
    Ma, Ming-Guo
    Zhang, Xue-Ming
    Xue, Zhi-Min
    Zhu, Jie-Fang
    POLYMERS, 2016, 8 (09)
  • [28] Microwave-Assisted Hydrothermal Synthesis of α-MoO3
    Z. A. Fattakhova
    E. G. Vovkotrub
    G. S. Zakharova
    Russian Journal of Inorganic Chemistry, 2021, 66 : 35 - 41
  • [29] Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis
    Caglar, Yasemin
    Gorgun, Kamuran
    Aksoy, Seval
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2015, 138 : 617 - 622
  • [30] Synthesis of ZnO nanorods by one step microwave-assisted hydrothermal route for electronic device applications
    N. Senthilkumar
    E. Vivek
    M. Shankar
    M. Meena
    M. Vimalan
    I. Vetha Potheher
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 2927 - 2938