A note on fractional Simpson-like type inequalities for functions whose third derivatives are convex

被引:3
|
作者
Hezenci, Fatih [1 ]
Budak, Huseyin [1 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkiye
关键词
Simpson type inequalities; Convex function; Fractional integrals; Third derivative; INTEGRAL-INEQUALITIES;
D O I
10.2298/FIL2312715H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, equality is established for Riemann-Liouville fractional integral. With the aid of this equality, it is proved some fractional Simpson-like type inequalities for functions whose third derivatives in absolute value are convex. By using special cases of the main results, previously obtained Simpson type inequalities are found for the Riemann-Liouville fractional integral. Furthermore, the mathematical example is presented to verify the newly established inequality.
引用
收藏
页码:3715 / 3724
页数:10
相关论文
共 50 条
  • [21] FRACTIONAL MACLAURIN TYPE INEQUALITIES FOR FUNCTIONS WHOSE FIRST DERIVATIVES ARE s-CONVEX FUNCTIONS
    Djenaoui, S.
    Meftah, B.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 16 (03): : 483 - 506
  • [22] Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex
    Ling Chun
    Feng Qi
    Journal of Inequalities and Applications, 2013
  • [23] Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex
    Chun, Ling
    Qi, Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [24] A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions
    Hezenci, Fatih
    MATHEMATICA SLOVACA, 2023, 73 (03) : 675 - 686
  • [25] Extended weighted Simpson-like type inequalities for preinvex functions and their use in physical system
    Safdar, Farhat
    Attique, Muhammad
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2022, 54 (10): : 621 - 643
  • [26] Some Inequalities of Hermite-Hadamard Type for Functions Whose Third Derivatives Are (α, m)-Convex
    Shuang, Ye
    Wang, Yan
    Qi, Feng
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (02) : 272 - 279
  • [27] Hermite–Hadamard-type inequalities for functions whose derivatives are η-convex via fractional integrals
    Young Chel Kwun
    Muhammad Shoaib Saleem
    Mamoona Ghafoor
    Waqas Nazeer
    Shin Min Kang
    Journal of Inequalities and Applications, 2019
  • [28] Hermite-Hadamard-type inequalities for functions whose derivatives are -convex via fractional integrals
    Kwun, Young Chel
    Saleem, Muhammad Shoaib
    Ghafoor, Mamoona
    Nazeer, Waqas
    Kang, Shin Min
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [29] FRACTIONAL OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE DERIVATIVES ARE PREQUASIINVEX
    Avazpour, Ladan
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (02): : 15 - 29
  • [30] ON INEQUALITIES OF SIMPSON?S TYPE FOR CONVEX FUNCTIONS VIA GENERALIZED FRACTIONAL INTEGRALS
    Kara, Hasan
    Budak, Huseyin
    Ali, Muhammad Aamir
    Hezenci, Fatih
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (03): : 806 - 825