Automated Deep Learning Driven Crop Classification on Hyperspectral Remote Sensing Images

被引:5
|
作者
Duhayyim, Mesfer Al [1 ]
Alsolai, Hadeel [2 ]
Hassine, Siwar Ben Haj [3 ]
Alzahrani, Jaber S. [4 ]
Salama, Ahmed S. [5 ]
Motwakel, Abdelwahed [6 ]
Yaseen, Ishfaq [6 ]
Zamani, Abu Sarwar [6 ]
机构
[1] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities Aflaj, Dept Comp Sci, Al Kharj, Saudi Arabia
[2] Princess Nourah bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, POB 84428, Riyadh 11671, Saudi Arabia
[3] King Khalid Univ, Coll Sci & Art Mahayil, Dept Comp Sci, Abha, Saudi Arabia
[4] Umm Al Qura Univ, Coll Engn Alqunfudah, Dept Ind Engn, Al Qura, Saudi Arabia
[5] Future Univ Egypt, Fac Engn & Technol, Dept Elect Engn, New Cairo 11845, Egypt
[6] Prince Sattam bin Abdulaziz Univ, Dept Comp & Self Dev, Preparatory Year Deanship, AlKharj, Saudi Arabia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 74卷 / 02期
关键词
Hyperspectral images; remote sensing; deep learning; hurricane optimization algorithm; crop classification; parameter tuning; DIAGNOSIS; ALGORITHM;
D O I
10.32604/cmc.2023.033054
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral remote sensing/imaging spectroscopy is a novel approach to reaching a spectrum from all the places of a huge array of spatial places so that several spectral wavelengths are utilized for making coherent images. Hyperspectral remote sensing contains acquisition of digital images from several narrow, contiguous spectral bands throughout the visible, Ther-mal Infrared (TIR), Near Infrared (NIR), and Mid-Infrared (MIR) regions of the electromagnetic spectrum. In order to the application of agricultural regions, remote sensing approaches are studied and executed to their benefit of continuous and quantitative monitoring. Particularly, hyperspectral images (HSI) are considered the precise for agriculture as they can offer chemical and physical data on vegetation. With this motivation, this article presents a novel Hurricane Optimization Algorithm with Deep Transfer Learning Driven Crop Classification (HOADTL-CC) model on Hyperspectral Remote Sensing Images. The presented HOADTL-CC model focuses on the identification and categorization of crops on hyperspectral remote sensing images. To accom-plish this, the presented HOADTL-CC model involves the design of HOA with capsule network (CapsNet) model for generating a set of useful feature vectors. Besides, Elman neural network (ENN) model is applied to allot proper class labels into the input HSI. Finally, glowworm swarm optimization (GSO) algorithm is exploited to fine tune the ENN parameters involved in this article. The experimental result scrutiny of the HOADTL-CC method can be tested with the help of benchmark dataset and the results are assessed under distinct aspects. Extensive comparative studies stated the enhanced performance of the HOADTL-CC model over recent approaches with maximum accuracy of 99.51%.
引用
下载
收藏
页码:3167 / 3181
页数:15
相关论文
共 50 条
  • [21] Hyperspectral Remote Sensing Image Classification Using Improved Metaheuristic with Deep Learning
    Rajalakshmi S.
    Nalini S.
    Alkhayyat A.
    Malik R.Q.
    Computer Systems Science and Engineering, 2023, 46 (02): : 1673 - 1688
  • [22] WEED CLASSIFICATION IN HYPERSPECTRAL REMOTE SENSING IMAGES VIA DEEP CONVOLUTIONAL NEURAL NETWORK
    Farooq, Adnan
    Hu, Jiankun
    Jia, Xiuping
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3816 - 3819
  • [23] Deep Metric Learning for Disaster Damage Classification in Remote Sensing Images
    Zhang, Molan
    Chen, ZhiQiang
    LIFELINES 2022: ADVANCING LIFELINE ENGINEERING FOR COMMUNITY RESILIENCE, 2022, : 586 - 594
  • [24] MULTICLASS CLASSIFICATION OF REMOTE SENSING IMAGES USING DEEP LEARNING TECHNIQUES
    Arshad, Tahir
    Zhang Junping
    Qingyan Wang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7234 - 7237
  • [25] Advances in crop fine classification based on Hyperspectral Remote Sensing
    Zhang, Ying
    Wang, Di
    Zhou, Qingbo
    2019 8TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2019,
  • [26] Remote Sensing Based Crop Type Classification Via Deep Transfer Learning
    Gadiraju, Krishna Karthik
    Vatsavai, Ranga Raju
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 4699 - 4712
  • [27] Fine crop classification in high resolution remote sensing based on deep learning
    Lu, Tingyu
    Wan, Luhe
    Wang, Lei
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [28] Graph inductive learning method for small sample classification of hyperspectral remote sensing images
    Zuo, Xibing
    Yu, Xuchu
    Liu, Bing
    Zhang, Pengqiang
    Tan, Xiong
    Wei, Xiangpo
    EUROPEAN JOURNAL OF REMOTE SENSING, 2020, 53 (01) : 349 - 357
  • [29] Subspace Feature Analysis of Local Manifold Learning for Hyperspectral Remote Sensing Images Classification
    Ding, Ling
    Tang, Ping
    Li, Hongyi
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04): : 1987 - 1995
  • [30] TRANSFER LEARNING WITH LIMITED SAMPLES FOR THE SAME SOURCE HYPERSPECTRAL REMOTE SENSING IMAGES CLASSIFICATION
    Li, Wenmei
    Liu, Qing
    Wang, Yu
    Li, Hui
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 405 - 410